905 resultados para Development of large software systems,
Resumo:
A structurally-based quasi-chemical viscosity model has been developed for the Al2O3 CaO-'FeO'-MgO-SiO2 system. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of structural units are derived from the quasi-chemical thermodynamic model. The focus of the work described in the present paper is the analysis of experimental data and the viscosity models for fully liquid slags in the Al2O3-CaO-MgO, Al2O3 MgO-SiO2 and CaO-MgO-SiO2 systems.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.
Resumo:
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The prognostic value of exercise (EXE) and dobutamine echocardiograms (DbE) has been well defined in large studies. However, while risk is determined by both clinical and echo features, no simple means of combining these data has been defined. We sought to combine these data into risk scores. Methods. At 3 expert centers, 7650 pts underwent standard EXE (n=5211) and DbE (w2439) for evaluation of known or suspected CAD and were followed for up to 10 years (mean 5-2) for major events (death or myocardial infarction). A subgroup of 2953 EXE and 1025 DbE pts was randomly selected to develop separate multivariate models for prediction of events. After simplication of each model for clinical use, models were validated in the remaining EXE and DbE pts. ResuI1s. The total number of events was 200 in the EXE and 225 in the DbE pts, of which 58 and 99 events occurred in the respective testing groups. The following regression equations gave equivalent results I” the testing and validation groups for both EXE and DbE; DbE = (Age’O.02) + (DM’l .O) + (Low RPP’0.6) + ([CHF+lschemia+Scar]‘O.7) EXE = ([DM+CHF]‘O.S) + O.S(lschemla #) + l.B(Scar#) - (METS0.19) (where each categorical variable scored 1 when present and 0 when absent, Ischemia# = 1 for l-2 VD. 6 for 3 VD; Scar# = 1 for 1-2 VD, 1.7 for 3 VD). The table summarizes the scores and equivalent outcomes for EXE and DbE. Conclusions. Risk scores based on clinical and EXE or DbE results may be used to quantify the risk of events during follow-up.
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.