962 resultados para Density functional theory calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains can be due to oxygen incorporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of generation of atomic Na and K from SiO2 samples has been studied using explicitly correlated wave function and density functional theory cluster calculations. Possible pathways for the photon and electron stimulated desorption of Na and K atoms from silicates are proposed, thus providing new insight on the generation of the tenuous Na and K atmosphere of the Moon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through an interplay between scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we show that bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2(110) surface. We find that a direct correlation exists between a decrease in density of vacancies and the amount of Au deposited. From the DFT calculations we find that the oxygen vacancy is indeed the strongest Au binding site. We show both experimentally and theoretically that a single oxygen vacancy can bind 3 Au atoms on average. In view of the presented results, a new growth model for the TiO2(110) system involving vacancy-cluster complex diffusion is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calculations based on density functional theory at the B3LYP hybrid functional level applied to periodic models have been performed to characterize the structural and electronic properties of PbTiO3. Two different slab terminations (PbO and TiO2) have been considered to obtain and discuss the results of band structure, density of states, charge distribution on bulk and surface relaxation. It is observed that the relaxation processes are most prominent for the Ti and Pb surface atoms. The electron density maps confirm the partial covalent character of the Ti-O bonds. The calculated optical band gap and other results are in agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density Functional Theory (DFT) calculations on the interactions of small atoms (H, C, O, and S) on first-row transition metal clusters were performed. The results show that the adsorption site may vary between the metal surface and the edge of the cluster. The adsorption energies, adatom-nearest neighbor and adatom-metal plane distances were also determined. Finally, the authors present a discussion about the performance of these metals as anodes on solid oxide fuel cells. The results obtained agree with empirical data, indicating that the theoretical model used is adequate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The B3LYP/6-31G (d) density functional theory (DFT) method was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4)]octane (TTTO) was investigated by calculating bond dissociation energy (BDE) at the unrestricted B3LYP/6-31G(d) level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to P2(1)/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined experimental and Density functional theory (DFT) B3LYP/6-311+G* study on the IR spectra of four stable isomers of 2-N,N-dimethylaminecyclohexyl 1-N',N'-dimethylcarbamate was performed. Our theoretical calculations reveal that two new isomers of this compound exist and may be more stable than the known isomers. In addition the entropy, heat capacity, and the enthalpy content of the stable isomers are computed by fitting the calculated data to a standard Shomate equation and IR spectra for the two new isomers are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the structure and vibrational spectra of d-glucose and d-fructose in their open chain, alpha-anomer and beta-anomer monohydrate forms. The calculated data show that both molecules are not linear; ground state and the number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study both the structural and vibrational spectra of glucose and fructose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation reports on the interaction of the C/O triplet atoms inside of the [60] fullerene (C60) species with small polar molecules (H²O, CH³OH, HF, NH³) using Density Functional Theory (DFT) calculations. The calculations show that in all the computed cases the encapuslated complexes with the molecules are more stable than without internal atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film photovoltaic solar cells based on the Cu(In1−xGax)Se2 (CIGS) alloys have attracted more and more attention due to their large optical absorption coefficient, long term stability, low cost, and high efficiency. Modern theoretical studies of this material with first-principles calculations can provide accurate description of the electronic structure and yield results in close agreement with experimental values, but takes a large amount of calculation time. In this work, we use first-principles calculations based on the computationally affordable meta- generalized gradient approximation of the density-functional theory to investigate electronic and structural properties of the CIGS alloys. We report on the simulation of the lattice parameters and band gaps, as a function of chemical composition. The obtained results were found to be in a good agreement with the available experimental data.