495 resultados para Demodex brevis
Resumo:
Late Maestrichtian to late Eocene bathyal benthic foraminiferal faunas at Sites 752,753, and 754 on Broken Ridge in the eastern Indian Ocean were analyzed as to their stratigraphic distribution of species to clarify the relation between faunal turnovers and paleoceanographic changes. Based on Q-mode factor analysis, eight varimax assemblages were distinguished: the Stensioina beccariiformis assemblage in the upper Maestrichtian to upper Paleocene; the Cibicidoides hyphalus assemblage in the upper Maestrichtian; the Cibicidoides cf. pseudoperlucidus assemblage in the upper Paleocene; the Anomalinoides capitatusldanicus assemblage in the uppermost Paleocene to lower Eocene; the Cibicidoides subspiratus assemblage in the lower Eocene; the Nuttallides truempyi assemblage in the lower and middle Eocene; the Osangularia sp. 1 - Hanzawaia ammophila assemblage in the upper Eocene; and the Lenticulina spp. assemblage in the uppermost Eocene, Oligocene, and lower Miocene. The presence of the Osangularia sp. 1 - Hanzawaia ammophila assemblage is related to the shallowing episode on Broken Ridge (upper bathyal), as a result of the rifting event that occurred in the middle Eocene. The most distinct faunal change (the disappearance of about 37% of the species) occurred between the S. beccariiformis assemblage and the A. capitatusldanicus assemblage, at the end of the upper Paleocene. A. capitatusldanicus, Lenticulina spp., and varied forms of Cibicidoides replaced the Velasco-type fauna at this time. The timing of this event is well correlated with the known age at South Atlantic sites (Thomas, 1990 doi:10.2973/odp.proc.sr.113.123.1990; Kennett and Stott, 1990 doi:10.2973/odp.proc.sr.113.188.1990; Katz and Miller, 1990 doi:10.2973/odp.proc.sr.114.147.1991). The primary cause of the extinction of the Stensioina beccariiformis assemblage is elusive, but may have resulted from the cessation of deep-water formation in the Antarctic (Katz and Miller, 1990), and subsequent arrival of warm saline deep water (Thomas, 1990; Kennett and Stott, 1990). Another possibility may be a weakened influence of high-salinity water formed at the low latitudes such as the Tethys Sea. The extinction event corresponds to the change from higher delta13C values in benthic foraminifers to lower ones. An interpretation of delta13C values is that the eastern Indian deep water, characterized by young and nutrient-depleted water, became old water which was devoid of a supply of new water during the latest Paleocene to early Eocene. Prior to this benthic event, signals of related faunal change were detected in the following short periods: early and late Paleocene, near the boundary of nannofossil Zone CP4, and Zone CP5 of the late Paleocene at Site 752. Among common taxa in the upper Maestrichtian, only seven species disappeared or became extinct at the Cretaceous/ Tertiary boundary at Site 752. The benthic foraminiferal population did not change for up to 2 m above the boundary, in contrast to the rapid decrease of the plankt onic foraminiferal population at the boundary. A decrease in the number of benthic foraminifers occurs after that level, corresponding to an interval of decreased numbers of planktonic foraminifers and higher abundance of volcanic ash. Reduced species diversity (H') suggests a secondary effect attributable to the dissolution of foraminiferal tests. The different responses of planktonic and benthic foraminifers to the event just above the boundary suggest that the Cretaceous/Tertiary event was a surface event as also suggested by Thomas (1990). In addition, a positive shift of delta13C in benthic foraminifers after the event indicates nutrient-depleted bottom water at Site 752.
Resumo:
This paper discusses the Paleobathymetric and paleoenvironmental history of the New Hebrides Island Arc and North d'Entrecasteaux Ridge during Cenozoic time based on benthic foraminiferal and sedimentological data. Oligocene and Pliocene to Pleistocene benthic foraminiferal assemblages from Sites 827, 828, 829, and 832 of Ocean Drilling Program (ODP) Leg 134 (Vanuatu) are examined by means of Q-mode factor analysis. The results of this analysis recognize the following bathymetrically significant benthic foraminiferal biofacies: (1) Globocassidulina subglobosa biofacies and Bulimina aculeata-Bolivinita quadrilatera biofacies representing the upper bathyal zone (600-1500 m); (2) Gavelinopsis praegeri-Cibicides wuellerstorfi biofacies, indicating the Pacific Intermediate Water (water depth between 1500 and 2400 m); (3) Tosaia hanzawai-Globocassidulina muloccensis biofacies, Valvulineria gunjii biofacies, and the Melonis barleeanus-Melonis sphaeroides biofacies, which characterize the lower bathyal zone; (4) the Nuttallides umbonifera biofacies, which characterizes the interval between the lysocline (approximately 3500 m) and the carbonate compensation depth (approximately 4500 m); and (5) the Rhabdammina abyssorum biofacies representing the abyssal zone below the carbonate compensation depth. Benthic foraminiferal patterns are used to construct Paleobathymetric and paleogeographic profiles of the New Hebrides Island Arc and North d'Entrecasteaux Ridge for the following age boundaries: late Miocene/Pliocene, early/late Pliocene, Pliocene/Pleistocene, and Pleistocene/Holocene.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.
Resumo:
Oligocene to Pleistocene bathyal benthic foraminifers at Broken Ridge (Site 754) and Ninetyeast Ridge (Site 756), eastern Indian Ocean, were investigated for then- stratigraphic distribution and their response to paleoceanographic changes. Q-mode factor analysis was applied to relative abundance data of the most abundant benthic foraminifers. At Site 754, seven varimax assemblages were recognized from the upper Oligocene to the Pleistocene: the Gyroidina orbicularis-Rectuvigerina striata Assemblage in the uppermost Oligocene; the Lenticulina spp. Assemblage in the upper Oligocene to lower Miocene, and in lower Miocene to lowermost middle Miocene; the Burseolina cf. pacifica-Cibicidoides mundulus Assemblage in the lower Miocene; the Planulina wuellerstorfi Assemblage in the upper middle Miocene; the Globocassidulina spp. Assemblage in the upper Miocene; the Gavelinopsis lobatulus-Uvigerina proboscidea Assemblage in the Pliocene; and the Ehrenbergina spp. Assemblage in the Pleistocene. The major faunal changes are complex, but exist between the Lenticulina spp. Assemblage and the P. wuellerstorfi Assemblage at ~13.8 Ma, and between the Ehrenbergina spp. Assemblage and the G. lobatulus Assemblage at ~5 Ma. The development of the P. wuellerstorfi and Globocassidulina spp. Assemblages after 13.8 Ma is correlated with the decrease in temperature of the intermediate waters of the ocean, in turn related to Antarctic glacial expansion. The faunal changes at ~5 Ma are related to the development of low oxygen intermediate water, formed in the presence of a strong thermocline. At Site 756, six varimax assemblages are distributed as follows: the Cibicidoides cf. mundulus-Oridorsalis umbonatus Assemblage in the lower Oligocene; the Epistominella umbonifera-Cibicidoides mundulus Assemblage from the upper Oligocene to the lower Miocene; the Cibicidoides mundulus-Burseolinapacifica Assemblage from lower Miocene to the lower middle Miocene; the Globocassidulina spp. Assemblage from the upper lower Miocene to the Pliocene; the Uvigerina proboscidea Assemblage in the upper Miocene and the Pliocene; and the Globocassidulina sp. D Assemblage in the Pliocene. The main faunal change at this site is between the E. umbonifera Assemblage and the Globocassidulina spp. Assemblage, at ~17.1 Ma. The timing of this faunal change is coeval with faunal changes in the North Atlantic and the Pacific. The change is related to a change in bottom water characteristics caused by an increased influence of carbonate corrosive water from the Antarctic source region, and a change in surface productivity. A low oxygen event at Site 756, which started at about 7.3 Ma, occurred about 2.3 m.y. before that at Site 754. The different response to global paleoceanographic changes is not yet explained, but may be due to the difference of marine topography and the degree of upwelling
Resumo:
The Pliocene and Pleistocene periods are known for the onset and consequent amplification of glacial-interglacial cycles. The California margin, situated in the mid-latitudes of the northern Pacific Ocean, is expected to be one of the most interesting regions for Pliocene to Pleistocene paleoceanography because this area occupies a unique position in the ocean-atmosphere system over the region. In this study, we investigated paleoceanographic history, using fossil diatoms, since the Brunhes/Matuyama (B/M) paleomagnetic boundary in which glacial and interglacial periods began to alternate in 100-yr cycles. In Hole 1018A, to a depth corresponding to the beginning of Northern Hemisphere glaciation (late Pliocene), we investigated the responses of the ocean-atmosphere system to stepwise cooling in the California margin. Although the work is still continuing, this data report shows that fossil diatoms of Pliocene and Pleistocene sediments significantly changed both in quality and quantity and implies a possible relationship to global climatic changes.