959 resultados para Demand-Responsive Transportation Systems.
Resumo:
Ramp metering (RM) is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, RM algorithms fall into two categories by their effective scope: local control and coordinated control. Local control algorithm determines the metering rate based on the traffic condition on adjacent motorway mainline and the on-ramp. Conversely, coordinated RM strategies make use of measurements from the entire motorway network to operate individual ramp signals for optimal performance at the network level. This study proposes a multi-hierarchical strategy for on-ramp coordination. The strategy is structured in two layers. At the higher layer, a centralised, predictive controller plans the coordination control within a long update interval based on the location of high-risk breakdown flow. At the lower layer, reactive controllers determine the metering rates of those ramps involved in the ramp coordination with a short update interval. This strategy is modelled and applied to the northbound model of the Pacific Motorway in a micro-simulation platform (AIMSUN). The simulation results show that the proposed strategy effectively delays the onset of congestion and reduces total congestion with better managed on-ramp queues.
Resumo:
Several intelligent transportation systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions were tested: video in vehicle, audio in vehicle, and on-road flashing marker. The results from the driving simulator were inputs for a developed model that used traffic microsimulation (VISSIM 5.4) to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of changes in driver speed and compliance rate was greater at passive crossings than at active crossings. The slight difference in speed of drivers approaching ITS devices indicated that ITS helped drivers encounter crossings in a safer way. Since the traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varied depending on ITS safety devices, some modifications were made to the traffic simulation. The results showed that exposure to ITS devices at active crossings did not influence drivers’ behavior significantly according to the traffic performance indicator, such as delay time, number of stops, speed, and stopped delay. However, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.
Resumo:
V. S. Borkar’s work was supported in part by grant number III.5(157)/99-ET from the Department of Science and Technology, Government of India. D. Manjunath’s work was supported in part by grant number 1(1)/2004-E-Infra from the Ministry of Information Technology, Government of India.
Resumo:
This paper presents the design and development of a novel optical vehicle classifier system, which is based on interruption of laser beams, that is suitable for use in places with poor transportation infrastructure. The system can estimate the speed, axle count, wheelbase, tire diameter, and the lane of motion of a vehicle. The design of the system eliminates the need for careful optical alignment, whereas the proposed estimation strategies render the estimates insensitive to angular mounting errors and to unevenness of the road. Strategies to estimate vehicular parameters are described along with the optimization of the geometry of the system to minimize estimation errors due to quantization. The system is subsequently fabricated, and the proposed features of the system are experimentally demonstrated. The relative errors in the estimation of velocity and tire diameter are shown to be within 0.5% and to change by less than 17% for angular mounting errors up to 30 degrees. In the field, the classifier demonstrates accuracy better than 97.5% and 94%, respectively, in the estimation of the wheelbase and lane of motion and can classify vehicles with an average accuracy of over 89.5%.
Resumo:
Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.
Resumo:
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Urbanisation is the great driving force of the twenty-first century. Cities are associated with both productivity and creativity, and the benefits offered by closely connected and high density living and working contribute to sustainability. At the same time, cities need extensive infrastructure – like water, power, sanitation and transportation systems – to operate effectively. Cities therefore comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels, all forming the backdrop for the interaction of people and processes. Bringing together large numbers of people and complex products in rich interactions can lead to vulnerability from hazards, threats and even trends, whether natural hazards, epidemics, political upheaval, demographic changes, economic instability and/or mechanical failures; The key to countering vulnerability is the identification of critical systems and clear understanding of their interactions and dependencies. Critical systems can be assessed methodically to determine the implications of their failure and their interconnectivities with other systems to identify options. The overriding need is to support resilience – defined here as the degree to which a system or systems can continue to function effectively in a changing environment. Cities need to recognise the significance of devising adaptation strategies and processes to address a multitude of uncertainties relating to climate, economy, growth and demography. In this paper we put forward a framework to support cities in understanding the hazards, threats and trends that can make them vulnerable to unexpected changes and unpredictable shocks. The framework draws on an asset model of the city, in which components that contribute to resilience include social capital, economic assets, manufactured assets, and governance. The paper reviews the field, and draws together an overarching framework intended to help cities plan a robust trajectory towards increased resilience through flexibility, resourcefulness and responsiveness. It presents some brief case studies demonstrating the applicability of the proposed framework to a wide variety of circumstances.
Resumo:
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.
Resumo:
Predictability -- the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements -- is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems – possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing -- cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems -- not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the Cleopatra programming language. Cleopatra features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. Cleopatra is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of Cleopatra has been in use as a specification and simulation language for embedded time-critical robotic processes.