811 resultados para Database, Image Retrieval, Browsing, Semantic Concept
Resumo:
Many user studies in Web information searching have found the significant effect of task types on search strategies. However, little attention was given to Web image searching strategies, especially the query reformulation activity despite that this is a crucial part in Web image searching. In this study, we investigated the effects of topic domains and task types on user’s image searching behavior and query reformulation strategies. Some significant differences in user’s tasks specificity and initial concepts were identified among the task domains. Task types are also found to influence participant’s result reviewing behavior and query reformulation strategies.
Resumo:
This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.
Resumo:
Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.
Resumo:
Electronic Health Record (EHR) retrieval processes are complex demanding Information Technology (IT) resources exponentially in particular memory usage. Database-as-a-service (DAS) model approach is proposed to meet the scalability factor of EHR retrieval processes. A simulation study using ranged of EHR records with DAS model was presented. The bucket-indexing model incorporated partitioning fields and bloom filters in a Singleton design pattern were used to implement custom database encryption system. It effectively provided faster responses in the range query compared to different types of queries used such as aggregation queries among the DAS, built-in encryption and the plain-text DBMS. The study also presented with constraints around the approach should consider for other practical applications.
Resumo:
In the recent past, there are some social issues when personal sensitive data in medical database were exposed. The personal sensitive data should be protected and access must be accounted for. Protecting the sensitive information is possible by encrypting such information. The challenge is querying the encrypted information when making the decision. Encrypted query is practically somewhat tedious task. So we present the more effective method using bucket index and bloom filter technology. We find that our proposed method shows low memory and fast efficiency comparatively. Simulation approaches on data encryption techniques to improve health care decision making processes are presented in this paper as a case scenario.
Resumo:
This paper describes the development and testing of a novel mill design to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by pushing bagasse upwards while juice drains downwards under gravity. The potential of the design to reduce bagasse moisture content has not been adequately established. The prototype mill had limited power available that prevented typical delivery nip compactions from being achieved. Tests conducted did show a reduction in bagasse moisture but that moisture reduction is less than expected under ideal conditions. Work on the mill design has ceased, at least for the foreseeable future. The design does have potential to reduce bagasse moisture content but presents some engineering challenges to establish a reliable, low maintenance design alternative.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
This paper addresses the issue of analogical inference, and its potential role as the mediator of new therapeutic discoveries, by using disjunction operators based on quantum connectives to combine many potential reasoning pathways into a single search expression. In it, we extend our previous work in which we developed an approach to analogical retrieval using the Predication-based Semantic Indexing (PSI) model, which encodes both concepts and the relationships between them in high-dimensional vector space. As in our previous work, we leverage the ability of PSI to infer predicate pathways connecting two example concepts, in this case comprising of known therapeutic relationships. For example, given that drug x TREATS disease z, we might infer the predicate pathway drug x INTERACTS WITH gene y ASSOCIATED WITH disease z, and use this pathway to search for drugs related to another disease in similar ways. As biological systems tend to be characterized by networks of relationships, we evaluate the ability of quantum-inspired operators to mediate inference and retrieval across multiple relations, by testing the ability of different approaches to recover known therapeutic relationships. In addition, we introduce a novel complex vector based implementation of PSI, based on Plate’s Circular Holographic Reduced Representations, which we utilize for all experiments in addition to the binary vector based approach we have applied in our previous research.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2012 Medical Records Track. This paper reports on our methods, results and experience using an approach that exploits the concept and inter-concept relationships defined in the SNOMED CT medical ontology. Our concept-based approach is intended to overcome specific challenges in searching medical records, namely vocabulary mismatch and granularity mismatch. Queries and documents are transformed from their term-based originals into medical concepts as defined by the SNOMED CT ontology, this is done to tackle vocabulary mismatch. In addition, we make use of the SNOMED CT parent-child `is-a' relationships between concepts to weight documents that contained concept subsumed by the query concepts; this is done to tackle the problem of granularity mismatch. Finally, we experiment with other SNOMED CT relationships besides the is-a relationship to weight concepts related to query concepts. Results show our concept-based approach performed significantly above the median in all four performance metrics. Further improvements are achieved by the incorporation of weighting subsumed concepts, overall leading to improvement above the median of 28% infAP, 10% infNDCG, 12% R-prec and 7% Prec@10. The incorporation of other relations besides is-a demonstrated mixed results, more research is required to determined which SNOMED CT relationships are best employed when weighting related concepts.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
Due to the development of XML and other data models such as OWL and RDF, sharing data is an increasingly common task since these data models allow simple syntactic translation of data between applications. However, in order for data to be shared semantically, there must be a way to ensure that concepts are the same. One approach is to employ commonly usedschemas—called standard schemas —which help guarantee that syntactically identical objects have semantically similar meanings. As a result of the spread of data sharing, there has been widespread adoption of standard schemas in a broad range of disciplines and for a wide variety of applications within a very short period of time. However, standard schemas are still in their infancy and have not yet matured or been thoroughly evaluated. It is imperative that the data management research community takes a closer look at how well these standard schemas have fared in real-world applications to identify not only their advantages, but also the operational challenges that real users face. In this paper, we both examine the usability of standard schemas in a comparison that spans multiple disciplines, and describe our first step at resolving some of these issues in our Semantic Modeling System. We evaluate our Semantic Modeling System through a careful case study of the use of standard schemas in architecture, engineering, and construction, which we conducted with domain experts. We discuss how our Semantic Modeling System can help the broader problem and also discuss a number of challenges that still remain.
Resumo:
With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.