925 resultados para Data uncertainty
Resumo:
This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the United States and Europe. Despite the abundance of available data, obtaining useable information about the weather in your local neighbourhood requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this case we are particularly interested in allowing a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods. We also consider how the uncertainty that the interpolation introduces can then be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.
Resumo:
An applied psychological framework for coping with performance uncertainty in sport and work systems is presented. The theme of personal control serves to integrate ideas prevalent in industrial and organisational psychology, the stress literature and labour process theory. These commonly focus on the promotion of tacit knowledge and learned resourcefulness in individual performers. Finally, data from an empirical evaluation of a development training programme to facilitate self-regulation skills in professional athletes are briefly highlighted.
Resumo:
Self-adaptation enables software systems to respond to changing environmental contexts that may not be fully understood at design time. Designing a dynamically adaptive system (DAS) to cope with this uncertainty is challenging, as it is impractical during requirements analysis and design time to anticipate every environmental condition that the DAS may encounter. Previously, the RELAX language was proposed to make requirements more tolerant to environmental uncertainty, and Claims were applied as markers of uncertainty that document how design assumptions affect goals. This paper integrates these two techniques in order to assess the validity of Claims at run time while tolerating minor and unanticipated environmental conditions that can trigger adaptations. We apply the proposed approach to the dynamic reconfiguration of a remote data mirroring network that must diffuse data while minimizing costs and exposure to data loss. Results show RELAXing Claims enables a DAS to reduce adaptation costs. © 2012 Springer-Verlag.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.
Resumo:
Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.
Resumo:
Inventory control in complex manufacturing environments encounters various sources of uncertainity and imprecision. This paper presents one fuzzy knowledge-based approach to solving the problem of order quantity determination, in the presence of uncertain demand, lead time and actual inventory level. Uncertain data are represented by fuzzy numbers, and vaguely defined relations between them are modeled by fuzzy if-then rules. The proposed representation and inference mechanism are verified using a large numbers of examples. The results of three representative cases are summarized. Finally a comparison between the developed fuzzy knowledge-based and traditional, probabilistic approaches is discussed.
Resumo:
OpenMI is a widely used standard allowing exchange of data between integrated models, which has mostly been applied to dynamic, deterministic models. Within the FP7 UncertWeb project we are developing mechanisms and tools to support the management of uncertainty in environmental models. In this paper we explore the integration of the UncertWeb framework with OpenMI, to assess the issues that arise when propagating uncertainty in OpenMI model compositions, and the degree of integration possible with UncertWeb tools. In particular we develop an uncertainty-enabled model for a simple Lotka-Volterra system with an interface conforming to the OpenMI standard, exploring uncertainty in the initial predator and prey levels, and the parameters of the model equations. We use the Elicitator tool developed within UncertWeb to identify the initial condition uncertainties, and show how these can be integrated, using UncertML, with simple Monte Carlo propagation mechanisms. The mediators we develop for OpenMI models are generic and produce standard Web services that expose the OpenMI models to a Web based framework. We discuss what further work is needed to allow a more complete system to be developed and show how this might be used practically.
Resumo:
In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.
Resumo:
The uncertainty of measurements must be quantified and considered in order to prove conformance with specifications and make other meaningful comparisons based on measurements. While there is a consistent methodology for the evaluation and expression of uncertainty within the metrology community industry frequently uses the alternative Measurement Systems Analysis methodology. This paper sets out to clarify the differences between uncertainty evaluation and MSA and presents a novel hybrid methodology for industrial measurement which enables a correct evaluation of measurement uncertainty while utilising the practical tools of MSA. In particular the use of Gage R&R ANOVA and Attribute Gage studies within a wider uncertainty evaluation framework is described. This enables in-line measurement data to be used to establish repeatability and reproducibility, without time consuming repeatability studies being carried out, while maintaining a complete consideration of all sources of uncertainty and therefore enabling conformance to be proven with a stated level of confidence. Such a rigorous approach to product verification will become increasingly important in the era of the Light Controlled Factory with metrology acting as the driving force to achieve the right first time and highly automated manufacture of high value large scale products such as aircraft, spacecraft and renewable power generation structures.
Resumo:
The focus of this study is on the governance decisions in a concurrent channels context, in the case of uncertainty. The study examines how a firm chooses to deploy its sales force in times of uncertainty, and the subsequent performance outcome of those deployment choices. The theoretical framework is based on multiple theories of governance, including transaction cost analysis (TCA), agency theory, and institutional economics. Three uncertainty variables are investigated in this study. The first two are demand and competitive uncertainty which are considered to be industry-level market uncertainty forms. The third uncertainty, political uncertainty, is chosen as it is an important dimension of institutional environments, capturing non-economic circumstances such as regulations and political systemic issues. The study employs longitudinal secondary data from a Thai hotel chain, comprising monthly observations from January 2007 – December 2012. This hotel chain has its operations in 4 countries, Thailand, the Philippines, United Arab Emirates – Dubai, and Egypt, all of which experienced substantial demand, competitive, and political uncertainty during the study period. This makes them ideal contexts for this study. Two econometric models, both deploying Newey-West estimations, are employed to test 13 hypotheses. The first model considers the relationship between uncertainty and governance. The second model is a version of Newey-West, using an Instrumental Variables (IV) estimator and a Two-Stage Least Squares model (2SLS), to test the direct effect of uncertainty on performance and the moderating effect of governance on the relationship between uncertainty and performance. The observed relationship between uncertainty and governance observed follows a core prediction of TCA; that vertical integration is the preferred choice of governance when uncertainty rises. As for the subsequent performance outcomes, the results corroborate that uncertainty has a negative effect on performance. Importantly, the findings show that becoming more vertically integrated cannot help moderate the effect of demand and competitive uncertainty, but can significantly moderate the effect of political uncertainty. These findings have significant theoretical and practical implications, and extend our knowledge of the impact on uncertainty significantly, as well as bringing an institutional perspective to TCA. Further, they offer managers novel insight into the nature of different types of uncertainty, their impact on performance, and how channel decisions can mitigate these impacts.
Resumo:
eHabitat is a Web Processing Service (WPS) designed to compute the likelihood of finding ecosystems with equal properties. Inputs to the WPS, typically thematic geospatial "layers", can be discovered using standardised catalogues, and the outputs tailored to specific end user needs. Because these layers can range from geophysical data captured through remote sensing to socio-economical indicators, eHabitat is exposed to a broad range of different types and levels of uncertainties. Potentially chained to other services to perform ecological forecasting, for example, eHabitat would be an additional component further propagating uncertainties from a potentially long chain of model services. This integration of complex resources increases the challenges in dealing with uncertainty. For such a system, as envisaged by initiatives such as the "Model Web" from the Group on Earth Observations, to be used for policy or decision making, users must be provided with information on the quality of the outputs since all system components will be subject to uncertainty. UncertWeb will create the Uncertainty-Enabled Model Web by promoting interoperability between data and models with quantified uncertainty, building on existing open, international standards. It is the objective of this paper to illustrate a few key ideas behind UncertWeb using eHabitat to discuss the main types of uncertainties the WPS has to deal with and to present the benefits of the use of the UncertWeb framework.
Resumo:
UncertWeb is a European research project running from 2010-2013 that will realize the uncertainty enabled model web. The assumption is that data services, in order to be useful, need to provide information about the accuracy or uncertainty of the data in a machine-readable form. Models taking these data as imput should understand this and propagate errors through model computations, and quantify and communicate errors or uncertainties generated by the model approximations. The project will develop technology to realize this and provide demonstration case studies.