873 resultados para Data storage equipment
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
Several authors stress the importance of data’s crucial foundation for operational, tactical and strategic decisions (e.g., Redman 1998, Tee et al. 2007). Data provides the basis for decision making as data collection and processing is typically associated with reducing uncertainty in order to make more effective decisions (Daft and Lengel 1986). While the first series of investments of Information Systems/Information Technology (IS/IT) into organizations improved data collection, restricted computational capacity and limited processing power created challenges (Simon 1960). Fifty years on, capacity and processing problems are increasingly less relevant; in fact, the opposite exists. Determining data relevance and usefulness is complicated by increased data capture and storage capacity, as well as continual improvements in information processing capability. As the IT landscape changes, businesses are inundated with ever-increasing volumes of data from both internal and external sources available on both an ad-hoc and real-time basis. More data, however, does not necessarily translate into more effective and efficient organizations, nor does it increase the likelihood of better or timelier decisions. This raises questions about what data managers require to assist their decision making processes.
Resumo:
The purpose of this paper is to study the profiling of property, plant and equipment (PPE) contributions in Australia and Malaysia construction companies. A company’s worth is usually based on the listed share price on the stock exchange. In arriving at the net profit, the contribution of PPE in the company’s assets is somehow being neglected. This paper will investigate the followings; firstly the level of PPE contribution in the construction firms by comparing the PPE contributions to the company’s asset as a whole which includes fixed (non-current) assets and current assets. This will determine the true strength of the companies, rather than relying on the share prices alone. Secondly, the paper will determine the trend of company’s asset ownership to show the company’s performance of the PPE ownership during the period of study. The data is based on the selected construction companies listed on the Australian Stock Exchange (ASX) and Malaysian Stock Exchange, known as Bursa Malaysia. The profiling will help to determine the strength of the construction firms based on the PPE holding, and the level of PPE ownerships in the two countries construction firms during the period of study.
Resumo:
The Queensland University of Technology (QUT) in Brisbane, Australia, is involved in a number of projects funded by the Australian National Data Service (ANDS). Currently, QUT is working on a project (Metadata Stores Project) that uses open source VIVO software to aid in the storage and management of metadata relating to data sets created/managed by the QUT research community. The registry (called QUT Research Data Finder) will support the sharing and reuse of research datasets, within and external to QUT. QUT uses VIVO for both the display and the editing of research metadata.
Resumo:
The Queensland University of Technology (QUT) Library, like many other academic and research institution libraries in Australia, has been collaborating with a range of academic and service provider partners to develop a range of research data management services and collections. Three main strategies are being employed and an overview of process, infrastructure, usage and benefits is provided of each of these service aspects. The development of processes and infrastructure to facilitate the strategic identification and management of QUT developed datasets has been a major focus. A number of Australian National Data Service (ANDS) sponsored projects - including Seeding the Commons; Metadata Hub / Store; Data Capture and Gold Standard Record Exemplars have / will provide QUT with a data registry system, linkages to storage, processes for identifying and describing datasets, and a degree of academic awareness. QUT supports open access and has established a culture for making its research outputs available via the QUT ePrints institutional repository. Incorporating open access research datasets into the library collections is an equally important aspect of facilitating the adoption of data-centric eresearch methods. Some datasets are available commercially, and the library has collaborated with QUT researchers, in the QUT Business School especially strongly, to identify and procure a rapidly growing range of financial datasets to support research. The library undertakes licensing and uses the Library Resource Allocation to pay for the subscriptions. It is a new area of collection development for with much to be learned. The final strategy discussed is the library acting as “data broker”. QUT Library has been working with researchers to identify these datasets and undertake the licensing, payment and access as a centrally supported service on behalf of researchers.
Resumo:
This project researched the performance of emerging digital technology for high voltage electricity substations that significantly improves safety for staff and reduces the potential impact on the environment of equipment failure. The experimental evaluation used a scale model of a substation control system that incorporated real substation control and networking equipment with real-time simulation of the power system. The outcomes confirm that it is possible to implement Ethernet networks in high voltage substations that meet the needs of utilities; however component-level testing of devices is necessary to achieve this. The assessment results have been used to further develop international standards for substation communication and precision timing.
Resumo:
Queensland University of Technology (QUT) Library offers a range of resources and services to researchers as part of their research support portfolio. This poster will present key features of two of the data management services offered by research support staff at QUT Library. The first service is QUT Research Data Finder (RDF), a product of the Australian National Data Service (ANDS) funded Metadata Stores project. RDF is a data registry (metadata repository) that aims to publicise datasets that are research outputs arising from completed QUT research projects. The second is a software and code registry, which is currently under development with the sole purpose of improving discovery of source code and software as QUT research outputs. RESEARCH DATA FINDER As an integrated metadata repository, Research Data Finder aligns with institutional sources of truth, such as QUT’s research administration system, ResearchMaster, as well as QUT’s Academic Profiles system to provide high quality data descriptions that increase awareness of, and access to, shareable research data. The repository and its workflows are designed to foster better data management practices, enhance opportunities for collaboration and research, promote cross-disciplinary research and maximise the impact of existing research data sets. SOFTWARE AND CODE REGISTRY The QUT Library software and code registry project stems from concerns amongst researchers with regards to development activities, storage, accessibility, discoverability and impact, sharing, copyright and IP ownership of software and code. As a result, the Library is developing a registry for code and software research outputs, which will use existing Research Data Finder architecture. The underpinning software for both registries is VIVO, open source software developed by Cornell University. The registry will use the Research Data Finder service instance of VIVO and will include a searchable interface, links to code/software locations and metadata feeds to Research Data Australia. Key benefits of the project include:improving the discoverability and reuse of QUT researchers’ code and software amongst QUT and the QUT research community; increasing the profile of QUT research outputs on a national level by providing a metadata feed to Research Data Australia, and; improving the metrics for access and reuse of code and software in the repository.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer- Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges, and foundations of this research trajectory. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarizes related work in this field of interest. We conclude by introducing the papers that have been contributed to this special issue.
Resumo:
Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
Hydrogeophysics is a growing discipline that holds significant promise to help elucidate details of dynamic processes in the near surface, built on the ability of geophysical methods to measure properties from which hydrological and geochemical variables can be derived. For example, bulk electrical conductivity is governed by, amongst others, interstitial water content, fluid salinity, and temperature, and can be measured using a range of geophysical methods. In many cases, electrical resistivity tomography (ERT) is well suited to characterize these properties in multiple dimensions and to monitor dynamic processes, such as water infiltration and solute transport. In recent years, ERT has been used increasingly for ecosystem research in a wide range of settings; in particular to characterize vegetation-driven changes in root-zone and near-surface water dynamics. This increased popularity is due to operational factors (e.g., improved equipment, low site impact), data considerations (e.g., excellent repeatability), and the fact that ERT operates at scales significantly larger than traditional point sensors. Current limitations to a more widespread use of the approach include the high equipment costs, and the need for site-specific petrophysical relationships between properties of interest. In this presentation we will discuss recent equipment advances and theoretical and methodological aspects involved in the accurate estimation of soil moisture from ERT results. Examples will be presented from two studies in a temperate climate (Michigan, USA) and one from a humid tropical location (Tapajos, Brazil).
Resumo:
The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.