840 resultados para Data Mining, Clustering, PSA, Pavement Deflection
Resumo:
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.
Resumo:
Il presente lavoro nasce dall’obiettivo di individuare strumenti statistici per indagare, sotto diversi aspetti, il flusso di lavoro di un Laboratorio di Anatomia Patologica. Il punto di partenza dello studio è l’ambiente di lavoro di ATHENA, software gestionale utilizzato nell’Anatomia Patologica, sviluppato dalla NoemaLife S.p.A., azienda specializzata nell’informatica per la sanità. A partire da tale applicativo è stato innanzitutto formalizzato il workflow del laboratorio (Capitolo 2), nelle sue caratteristiche e nelle sue possibili varianti, identificando le operazioni principali attraverso una serie di “fasi”. Proprio le fasi, unitamente alle informazioni addizionali ad esse associate, saranno per tutta la trattazione e sotto diversi punti di vista al centro dello studio. L’analisi che presentiamo è stata per completezza sviluppata in due scenari che tengono conto di diversi aspetti delle informazioni in possesso. Il primo scenario tiene conto delle sequenze di fasi, che si presentano nel loro ordine cronologico, comprensive di eventuali ripetizioni o cicli di fasi precedenti alla conclusione. Attraverso l’elaborazione dei dati secondo specifici formati è stata svolta un’iniziale indagine grafica di Workflow Mining (Capitolo 3) grazie all’ausilio di EMiT, un software che attraverso un set di log di processo restituisce graficamente il flusso di lavoro che li rappresenta. Questa indagine consente già di valutare la completezza dell’utilizzo di un applicativo rispetto alle sue potenzialità. Successivamente, le stesse fasi sono state elaborate attraverso uno specifico adattamento di un comune algoritmo di allineamento globale, l’algoritmo Needleman-Wunsch (Capitolo 4). L’utilizzo delle tecniche di allineamento applicate a sequenze di processo è in grado di individuare, nell’ambito di una specifica codifica delle fasi, le similarità tra casi clinici. L’algoritmo di Needleman-Wunsch individua le identità e le discordanze tra due stringhe di caratteri, assegnando relativi punteggi che portano a valutarne la similarità. Tale algoritmo è stato opportunamente modificato affinché possa riconoscere e penalizzare differentemente cicli e ripetizioni, piuttosto che fasi mancanti. Sempre in ottica di allineamento sarà utilizzato l’algoritmo euristico Clustal, che a partire da un confronto pairwise tra sequenze costruisce un dendrogramma rappresentante graficamente l’aggregazione dei casi in funzione della loro similarità. Proprio il dendrogramma, per la sua struttura grafica ad albero, è in grado di mostrare intuitivamente l’andamento evolutivo della similarità di un pattern di casi. Il secondo scenario (Capitolo 5) aggiunge alle sequenze l’informazione temporale in termini di istante di esecuzione di ogni fase. Da un dominio basato su sequenze di fasi, si passa dunque ad uno scenario di serie temporali. I tempi rappresentano infatti un dato essenziale per valutare la performance di un laboratorio e per individuare la conformità agli standard richiesti. Il confronto tra i casi è stato effettuato con diverse modalità, in modo da stabilire la distanza tra tutte le coppie sotto diversi aspetti: le sequenze, rappresentate in uno specifico sistema di riferimento, sono state confrontate in base alla Distanza Euclidea ed alla Dynamic Time Warping, in grado di esprimerne le discordanze rispettivamente temporali, di forma e, dunque, di processo. Alla luce dei risultati e del loro confronto, saranno presentate già in questa fase le prime valutazioni sulla pertinenza delle distanze e sulle informazioni deducibili da esse. Il Capitolo 6 rappresenta la ricerca delle correlazioni tra elementi caratteristici del processo e la performance dello stesso. Svariati fattori come le procedure utilizzate, gli utenti coinvolti ed ulteriori specificità determinano direttamente o indirettamente la qualità del servizio erogato. Le distanze precedentemente calcolate vengono dunque sottoposte a clustering, una tecnica che a partire da un insieme eterogeneo di elementi individua famiglie o gruppi simili. L’algoritmo utilizzato sarà l’UPGMA, comunemente applicato nel clustering in quanto, utilizzando, una logica di medie pesate, porta a clusterizzazioni pertinenti anche in ambiti diversi, dal campo biologico a quello industriale. L’ottenimento dei cluster potrà dunque essere finalmente sottoposto ad un’attività di ricerca di correlazioni utili, che saranno individuate ed interpretate relativamente all’attività gestionale del laboratorio. La presente trattazione propone quindi modelli sperimentali adattati al caso in esame ma idealmente estendibili, interamente o in parte, a tutti i processi che presentano caratteristiche analoghe.
Resumo:
Il task del data mining si pone come obiettivo l'estrazione automatica di schemi significativi da grandi quantità di dati. Un esempio di schemi che possono essere cercati sono raggruppamenti significativi dei dati, si parla in questo caso di clustering. Gli algoritmi di clustering tradizionali mostrano grossi limiti in caso di dataset ad alta dimensionalità, composti cioè da oggetti descritti da un numero consistente di attributi. Di fronte a queste tipologie di dataset è necessario quindi adottare una diversa metodologia di analisi: il subspace clustering. Il subspace clustering consiste nella visita del reticolo di tutti i possibili sottospazi alla ricerca di gruppi signicativi (cluster). Una ricerca di questo tipo è un'operazione particolarmente costosa dal punto di vista computazionale. Diverse ottimizzazioni sono state proposte al fine di rendere gli algoritmi di subspace clustering più efficienti. In questo lavoro di tesi si è affrontato il problema da un punto di vista diverso: l'utilizzo della parallelizzazione al fine di ridurre il costo computazionale di un algoritmo di subspace clustering.
Resumo:
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
Resumo:
The study of the effectiveness of the cognitive rehabilitation processes and the identification of cognitive profiles, in order to define comparable populations, is a controversial area, but concurrently it is strongly needed in order to improve therapies. There is limited evidence about cognitive rehabilitation efficacy. Many of the trials conclude that in spite of an apparent clinical good response, differences do not show statistical significance. The common feature in all these trials is heterogeneity among populations. In this situation, observational studies on very well controlled cohort of studies, together with innovative methods in knowledge extraction, could provide methodological insights for the design of more accurate comparative trials. Some correlation studies between neuropsychological tests and patients capacities have been carried out -1---2- and also correlation between tests and morphological changes in the brain -3-. The procedures efficacy depends on three main factors: the affectation profile, the scheduled tasks and the execution results. The relationship between them makes up the cognitive rehabilitation as a discipline, but its structure is not properly defined. In this work we present a clustering method used in Neuro Personal Trainer (NPT) to group patients into cognitive profiles using data mining techniques. The system uses these clusters to personalize treatments, using the patients assigned cluster to select which tasks are more suitable for its concrete needs, by comparing the results obtained in the past by patients with the same profile.
Resumo:
The mobile apps market is a tremendous success, with millions of apps downloaded and used every day by users spread all around the world. For apps’ developers, having their apps published on one of the major app stores (e.g. Google Play market) is just the beginning of the apps lifecycle. Indeed, in order to successfully compete with the other apps in the market, an app has to be updated frequently by adding new attractive features and by fixing existing bugs. Clearly, any developer interested in increasing the success of her app should try to implement features desired by the app’s users and to fix bugs affecting the user experience of many of them. A precious source of information to decide how to collect users’ opinions and wishes is represented by the reviews left by users on the store from which they downloaded the app. However, to exploit such information the app’s developer should manually read each user review and verify if it contains useful information (e.g. suggestions for new features). This is something not doable if the app receives hundreds of reviews per day, as happens for the very popular apps on the market. In this work, our aim is to provide support to mobile apps developers by proposing a novel approach exploiting data mining, natural language processing, machine learning, and clustering techniques in order to classify the user reviews on the basis of the information they contain (e.g. useless, suggestion for new features, bugs reporting). Such an approach has been empirically evaluated and made available in a web-‐based tool publicly available to all apps’ developers. The achieved results showed that the developed tool: (i) is able to correctly categorise user reviews on the basis of their content (e.g. isolating those reporting bugs) with 78% of accuracy, (ii) produces clusters of reviews (e.g. groups together reviews indicating exactly the same bug to be fixed) that are meaningful from a developer’s point-‐of-‐view, and (iii) is considered useful by a software company working in the mobile apps’ development market.
Resumo:
Introducción al análisis con Clustering
Resumo:
Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results.
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
The primary aim of this dissertation is to develop data mining tools for knowledge discovery in biomedical data when multiple (homogeneous or heterogeneous) sources of data are available. The central hypothesis is that, when information from multiple sources of data are used appropriately and effectively, knowledge discovery can be better achieved than what is possible from only a single source. ^ Recent advances in high-throughput technology have enabled biomedical researchers to generate large volumes of diverse types of data on a genome-wide scale. These data include DNA sequences, gene expression measurements, and much more; they provide the motivation for building analysis tools to elucidate the modular organization of the cell. The challenges include efficiently and accurately extracting information from the multiple data sources; representing the information effectively, developing analytical tools, and interpreting the results in the context of the domain. ^ The first part considers the application of feature-level integration to design classifiers that discriminate between soil types. The machine learning tools, SVM and KNN, were used to successfully distinguish between several soil samples. ^ The second part considers clustering using multiple heterogeneous data sources. The resulting Multi-Source Clustering (MSC) algorithm was shown to have a better performance than clustering methods that use only a single data source or a simple feature-level integration of heterogeneous data sources. ^ The third part proposes a new approach to effectively incorporate incomplete data into clustering analysis. Adapted from K-means algorithm, the Generalized Constrained Clustering (GCC) algorithm makes use of incomplete data in the form of constraints to perform exploratory analysis. Novel approaches for extracting constraints were proposed. For sufficiently large constraint sets, the GCC algorithm outperformed the MSC algorithm. ^ The last part considers the problem of providing a theme-specific environment for mining multi-source biomedical data. The database called PlasmoTFBM, focusing on gene regulation of Plasmodium falciparum, contains diverse information and has a simple interface to allow biologists to explore the data. It provided a framework for comparing different analytical tools for predicting regulatory elements and for designing useful data mining tools. ^ The conclusion is that the experiments reported in this dissertation strongly support the central hypothesis.^
Resumo:
La intención del proyecto es mostrar las diferentes características que ofrece Oracle en el campo de la minería de datos, con la finalidad de saber si puede ser una plataforma apta para la investigación y la educación en la universidad. En la primera parte del proyecto se estudia la aplicación “Oracle Data Miner” y como, mediante un flujo de trabajo visual e intuitivo, pueden aplicarse las distintas técnicas de minería (clasificación, regresión, clustering y asociación). Para mostrar la ejecución de estas técnicas se han usado dataset procedentes de la universidad de Irvine. Con ello se ha conseguido observar el comportamiento de los distintos algoritmos en situaciones reales. Para cada técnica se expone como evaluar su fiabilidad y como interpretar los resultados que se obtienen a partir de su aplicación. También se muestra la aplicación de las técnicas mediante el uso del lenguaje PL/SQL. Gracias a ello podemos integrar la minería de datos en nuestras aplicaciones de manera sencilla. En la segunda parte del proyecto, se ha elaborado un prototipo de una aplicación que utiliza la minería de datos, en concreto la clasificación para obtener el diagnóstico y la probabilidad de que un tumor de mama sea maligno o benigno, a partir de los resultados de una citología.
Resumo:
© 2014 Cises This work is distributed with License Creative Commons Attribution-Non commercial-No derivatives 4.0 International (CC BY-BC-ND 4.0)
Resumo:
Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.