974 resultados para DOUBLY EXCITED-STATES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The states of a boson pair in a one-dimensional double-well potential are investigated. Properties of the ground and lowest excited states of this system are studied, including the two-particle wave function, momentum pair distribution, and entanglement. The effects of varying both the barrier height and the effective interaction strength are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we survey the theory and applications of a family of methods (correlated electron-ion dynamics, or CEID) that can be applied to a diverse range of problems involving the non-adiabatic exchange of energy between electrons and nuclei. The simplest method, which is a paradigm for the others, is Ehrenfest Dynamics. This is applied to radiation damage in metals and the evolution of excited states in conjugated polymers. It is unable to reproduce the correct heating of nuclei by current carrying electrons, so we introduce a moment expansion that allows us to restore the spontaneous emission of phonons. Because of the widespread use of Non-Equilibrium Green's Functions for computing electric currents in nanoscale systems, we present a comparison of this formalism with that of CEID with open boundaries. When there is strong coupling between electrons and nuclei, the moment expansion does not converge. We thus conclude with a reworking of the CEID formalism that converges systematically and in a stable manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The resonance-Raman spectroscopic technique is an effective probe of the interaction between dipyridophenazine (dppz) complexes of ruthenium(II) and calf-thymus DNA, providing evidence that DNA addition results in changes to electronic transitions of the intercalating dppz ligand in both ground and excited states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies by laser flash photolysis, transient Raman spectroscopy, and Raman and UV-vis spectroelectrochemistry are described in which the techniques have been used in parallel to compare the lowest energy charge-transfer excited states of Cu (1) complexes ([Cu(L)2]+ and [ (PPh3)2Cu(L)]+ [L = 2,2'-biquinoline (BIQ) or 6,7-dihydro-5,8-dimethyldibenzo[b,j] [1,10]-phenanthroline (DMCH)) with the species produced by electrochemical reduction in the same group of complexes. Transient resonance Raman spectra for the metal-to-ligand charge-transfer (MLCT) states of [Cu(DMCH)2]+ (1), [Cu(BIQ)2]+ (2), [Cu(DMCH)(PPh3)2]+ (3), and [Cu(BIQ)(PPh3)2]+ (4) are compared with the resonance Raman spectra of the same group of complexes following one-electron electrochemical reduction of the DMCH and BIQ ligands. The UV-vis and resonance Raman evidence suggests that the electrochemical reduction of the [Cu(I)L2]+ species proceeds according to the sequence [LCu(I)L]+ -->e- [LCu0L] -->e- [L.-Cu(I)L.-]-. Several features assignable to modes of the electrochemically generated DMCH.-and BIQ'- radical anions exhibit a close correspondence in both frequency and relative intensity with counterparts in the spectra of the MLCT states of 1 and 2. A notable exception is a band near 1590 cm-1 in the spectra of the electrochemically reduced species which occurs some 15 cm-1 lower in the corresponding spectra of the excited-state species. It is suggested that the shift may reflect the change in oxidation state of the metal center from Cu(I) to Cu(II) which occurs as a result of charge-transfer excitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ruthenium(II) diimine complexes, such as ruthenium(II) tris( bipyridyl), Ru(bpy)(3)(2+), possess highly luminescent excited states that are not only readily quenched by oxygen but also by an increase in temperature. The former effect can be rendered insignificant by encapsulating the complex in an oxygen impermeable polymer, although encapsulation often leads also to a loss of temperature sensitivity. The luminescence properties of Ru(bpy)(3)(2+) encapsulated in PVA were studied as a function of oxygen concentration and temperature and found to be independent of the former, but still very sensitive towards the latter. The results were fitted to an established Arrhenius-type equation, based on thermal quenching of the emitting state by a slightly higher (Delta E = 3100 cm(-1)) (3)d-d state that deactivates very rapidly (10(-13) s) via a non-radiative process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The zero-range potential model is used to investigate positron collisions and annihilation with molecules. The Kr dimer is considered as an example. It is shown that (i) although positrons do not bind to individual Kr atoms, they do form bound states with Kr. (ii) A sequence of vibrationally excited states of the positron-molecule complex extends into the positron continuum, where it manifests as vibrational Feshbach resonances. (iii) These resonances give a very large contribution to the positron annihilation rate. Even after averaging over the thermal positron energy distribution, the contribution of the lowest Feshbach resonance exceeds that of the non-resonant background by an order of magnitude. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naphthalenic compounds are a rich resource for designers of fluorescent sensing/switching/logic systems. The degree of internal charge transfer (ICT) character in the fluorophore excited states can vary from negligible to substantial. Naphthalene-1,8;4,5-diimides (11–13), 1,8-naphthalimides (16) and 4-chloro-1,8-naphthalimides (15) are of the former type. The latter type is represented by the 4-alkylamino-1,8-naphthalimides (1). Whether ICT-based or not, these serve as the fluorophore in ‘fluorophore-spacer-receptor’ switching systems where PET holds sway until the receptor is bound to H+. On the other hand, 4-dialkylamino-1,8-naphthalimides (3–4) show modest H+-induced fluorescence switching unless the 4-dialkylamino group is a part of a small ring (5). Electrostatic destabilization of a non-emissive twisted internal charge transfer (ICT) excited state is the origin of this behaviour. An evolution to the non-emissive twisted ICT excited state is responsible for the weak emission of the model compound 6 (and related structures 7 and 8) across the pH range. Twisted ICT excited states are also implicated in the switch 9 and its model compound 10, which are based on the 6-dialkylamino-3H-benzimidazo[2,1-a]benz[d,e]isoquinolin-3-one fluorophore.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the UV photodissociation of specific vibrational states (v = 2–45) of ClO+ using velocity map
ion imaging. The high vibrational states of ClO+ are prepared via a double resonant scheme through the
ClO (A 2P) state and ion-pair states followed by photoionization with a third photon. The absorption of a
fourth photon results in photodissociation of the ClO+ into two dominant asymptotic channels. The Cl+
and O+ fragment ion images reveal information on both the energetics of high-lying cation vibrational
states and the low-lying dissociative electronic states that correlate to Cl+(3P) + O(3P) and Cl(2P) + O+(4S)
asymptotic channels. We also report ab initio potentials for the bound ClO+ and ion-pair states as well as
calculations of the ClO+ excited states relevant to the photodissociation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photoelectrochemistry of quinone radical anions has been demonstrated qualitatively by the photoassisted reduction of methyl viologen with benzoquinone and of neutral red with chloranil. Data were then collected for the estimation of quenching rate constants using Marcus-Weller theory. Reduction potentials of seven quinones were obtained in four solvents (and two aqueous mixtures) by cyclic voltammetry. The solvent effects on these potentials were studied by fitting them to the Taft relationship. The effects of proton donors were also noted. Absorption spectra of the radical anions were measured and the solvent effects noted and commented upon. From the molar absorption coefficients of the radical anions, the mean lifetimes of the excited states were estimated. Fluorescence spectra were obtained for anthraquinone and naphthaquinone radical anions and excitation energies were calculated. These values were estimated for the other quinones. Values of redox potentials for the excited radical anions were thence obtained. The Gibbs energies of the electron transfers between the excited quinone radical anions and the various substrates were obtained and hence the Gibbs energies of activation were calculated using the Marcus equation. The quenching rate constants were calculated using the Rehm-Weller equation and plotted vs. ΔG giving a characteristic Marcus plot including some data in the inverted region. The significance of the inverted region is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16–245 eV employing the photon–ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16–108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac–Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s 6Dj.  J = 1/2, ground level and the associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d56Sj, J = 5/2, and for the 4F term, 5d36s2 4Fj, with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+ the calculations reproduce the main features of the experimental cross section quite well.