972 resultados para DNA structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactivity-directed fractionation of the MeCOEt extract of Trichilia emetica (Meliaceae) resulted in the isolation of the limonoids nymania 1 (1), drageana 4 (3), trichilin A (4), rohituka 3 (5),and Tr-B (7) and the novel seco-A protolimonoid 8. of these, nymania 1 and Tr-B showed selective inhibitory activity toward DNA repair-deficient yeast mutants. The isolation, structure elucidation, C-13 NMR spectral assignments, and biological activities of:these compounds are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to identify the contribution of TEs to bovine genome evolution, the abundance, distribution and insertional orientation of TEs were examined in all bovine nuclear genes identified in sequence build 2.1 (released October 11, 2005). Exons, introns and promoter segments (3 kb upstream the transcription initiation sites) were screened with the RepeatMasker program. Most of the genes analyzed contained TE insertions, with an average of 18 insertions/gene. The majority of TE insertions identified were classified as retrotransposons and the remainder classified as DNA transposons. TEs were inserted into exons and promoter segments infrequently, while insertion into intron sequences was strikingly more abundant. The contribution of TEs to exon sequence is of great interest because TE insertions can directly influence the phenotype by altering protein sequences. We report six cases where the entire exon sequences of bovine genes are apparently derived from TEs and one of them, the insertion of Charlie into a bovine transcript similar to the zinc finger 452 gene is analyzed in detail. The great similarity of the TE-cassette sequence to the ZNF452 protein and phylogenetic relationship strongly suggests the occurrence of Charlie 10 DNA exaptation in the mammalian zinc finger 452 gene. (c) 2006 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus, DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms, (at a DNA:Eb molar ratio of 5). With salt titration, this value falls, to about 2.0 ms. This result suggests, a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This, effect may be understood considering DNA as a polyelectrolyte. The counterions, in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm(-1) corresponding to the symmetric stretching of the NH group of the bases, and 1225 cm(-1) corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytogenetic and DNA content studies were done on six nominal species of Corydoras from the southeast coast of Brazil. The data show that several nominal species present local populations with differences in karyotype or DNA content. There are at least two groups of Corydoras species with similar karyotypic structure in this region: the first composed by C. ehrhardti, C. nattereri and C. paleatus and the second composed of C. barbatus, C. macropterus and C. prionotos. These two groups of species are probably not derived directly from the same ancestral line. The speciation process of Corydoras species from the southeastern coast of Brazil is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the cloning and characterization of a long interspersed nucleotide element (LINE) fi-om a cichlid fish, Oreochromis niloticus, and show the distribution of this element, called CiLINE2 for cichlid LINE2, in the chromosomes of this species. The identification of an open reading frame in CiLINE2 with amino acid sequence similarity to reverse transcriptases encoded by LINE-like elements in Caenorhabditis elegans, Platemys spixii, Schistosoma mansoni, Gallus gallus (CRI), Drosophila melanogaster (I factor), and Homo sapiens (LINE2), as well as the structure of the element, suggest it is a member of this family of non-long terminal repeat-containing retrotransposons. Search of a DNA sequence database identified sequences similar to CiLINE2 in four other fish species (Haplotaxodon microlepis, Oreochromis mossambicus, Pseudotropheus zebra, and Fugu rubripes). Southern blot hybridization experiments revealed the presence of sequences similar to CiLINE2 in all Tilapiini species analyzed from the genera Oreochromis, Tilapia, and Sarotherodon, and gave an estimated copy number of about 5500 for the haploid genome of O. niloticus. Fluorescent in situ hybridization showed that CiLINE2 sequences were organized in small clusters dispersed over all chromosomes of O. niloticus, with a higher concentration near chromosome ends. Furthermore the long arm of chromosome 1 was strikingly enriched with this sequence. The distribution of LINE2-related elements might underlie the difference in chromosome banding patterns observed between cold-blooded vertebrates and mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 ± 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed β(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-β-d-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 Å resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (βα) 8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. © 2006 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that this synergy is a simple consequence of the larger diameter and lower net charge density of the protein-DNA filaments as compared to naked DNA, and hence, should be quite general. To illustrate this generality, we use light-scattering to show that the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus solfataricus (known to sharply bend DNA) likewise does not significantly condense DNA by itself. However, the resulting protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that they do not contribute to DNA condensation in the context of the crowded living cell. © 2007 World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish belonging to the genus Hypostomus are known for exhibiting a striking diversity in its karyotype structure, however the knowledge concerning the distribution patterns of heterochromatin and location of repetitive DNA sequences in the karyotypes is still limited. Aiming a better understanding of the chromosomal organization in this group, we analyzed three sympatric species of Hypostomus collected in the Hortelã stream, a component of the Paranapanema River basin, Botucatu/SP/Brazil. The analyses involved the cytogenetic characterization and chromosomal mapping of repetitive sequences and intra/interspecific comparisons using sequences of the cytochrome C oxidase subunit I. The results revealed that H. ancistroides presents a karyotype with 2n = 68 chromosomes, H. strigaticeps 2n = 72 chromosomes, and H. nigromaculatus 2n = 76 chromosomes. In addition to differences found in the diploid number, it was also observed variations in karyotypic formulae, amount of constitutive heterochromatin, and location of nucleolus organizer regions. The cytogenetic mapping of 5S and 18S rDNA, as well as of the H3 histone gene, disclosed a differential dispersion process among the three species. In some cases the Rex1 transposable element showed to be co-located with 5S rDNA sites. The molecular analyses support the cytogenetic data and represent an additional tool for the characterization of the analyzed species. The results evidenced that chromosomal variations are not restricted to differences in diploid number or karyotypic macrostructure in the genus Hypostomus, indicating that events such as transposition of heterochromatin and rDNA segments may participate in the differentiation process occurred in these species. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similar to many small, range-restricted elasmobranchs, the Brazilian sharpnose shark (Rhizoprionodon lalandii) is listed as 'data deficient' by the International Union for the Conservation of Nature (IUCN). Data on stock assessment and sustainability are scarce, and there is no information on population structure. This constitutes a management problem because this shark comprises approximately 50% of the catch of small coastal sharks in Brazil. In this study, populations of R. lalandii distributed from the Caribbean to southern Brazil were investigated using sequences from the mitochondrial DNA control region. Analysis of molecular variance revealed strong structuring between population samples from the Caribbean and those from the Brazilian coast (F{cyrillic}ST=0.254, P<0.0001). Significant differences in the rates of genetic diversity between these major areas were also detected. The observed levels of population structuring are likely to be driven by female phylopatry. Therefore, the identification of both mating and nursery areas with parallel ban/restriction of fishing in these areas may be critical for the long-term sustainability of these populations. © 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. R ST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding. © 2013 The American Phytopathological Society.