932 resultados para DIFFERENCE TIME-DOMAIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of an indoor Wimax radio channel using the Finite-Difference Time-Domain (FDTD) [1] method complemented with the Convolutional Perfect Matched Layer (CPML) technique [2]. An indoor 2D scenario is simulated in the 3.5GHz band (IEEE 802.16d-2004 and IEEE 802.16e-2005 [3]). In this study, we used two complementary techniques in both analysis, technique A and B for fading based on delay spread and technique C and D for fading based on Doppler spread. Both techniques converge to the same result. Simulated results define the channel as flat, slow and without inter-symbolic interference (ISI), making the application of the spatial diversity the most appropriate scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o crescimento previsível e exponencial das redes de comunicações móveis motivado pela mobilidade, flexibilidade e também comodidade do utilizador levam a que este se torne na fatia mais importante do mundo das telecomunicações dos dias que correm. Assim é importante estudar e caracterizar canais rádio para as mais diversas gamas de frequências utilizadas nas mais variadas tecnologias. O objectivo principal desta dissertação de Mestrado é caracterizar um canal rádio para a tecnologia sem fios Worldwide Inter-operability for Microwave Access (Wimax para as frequências de 3,5 GHz e 5 GHz) actualmente vista pela comunidade científica como a tecnologia sem fios com maiores perspectivas de sucesso. Para tal, determinaram-se o Perfil de Atraso de Potência (PAP) e também a Potência em Função da Distância (PFD) recorrendo ao método computacional de simulação Finite-Difference Time-Domain (FDTD). De forma a estudar e caracterizar o canal rádio, em termos de desvanecimento relativo ao espalhamento de atraso, usaram-se dois métodos alternativos que têm como entrada o PAP. Para caracterizar o canal quanto ao desvanecimento baseado em espalhamento de Doppler, recorreu-se também a duas técnicas alternativas tendo como entrada o PFD. Em ambas as situações os dois métodos alternativos convergiram para os mesmos resultados. A caracterização é feita em dois cenários diferentes: um em que consideramos que a maioria dos obstáculos são condutores eléctricos perfeitos (CEP) e que passaremos a designar Cenário PEC, e um segundo cenário em que os obstáculos têm propriedades electromagnéticas diferentes, e que passará a ser designado por Cenário MIX. Em ambos os cenários de análise concluiu-se que o canal é plano, lento e sem ISI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical Investigations on novel feeding techniques for bandwidth enhancement of microstrip patches. The new feeding techniques provide bandwidth enhancement without deteriorating the radiation characteristics of the antenna. The antenna is analysed using finite Difference Time Domain (FDTD) method. The predicated results are compared with the experimental results and excellent agreement is observed. The results are also verified using IE3D simulation software. The antenna is suitable for personal and broadband communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis explores the outcome of the exhaustive theoretical and experimental investigations performed on Octagonal Microstrip Antenna configurations. Development of the MATLAB TM backed 3D-Conformal Finite Difference Time Domain (CFDTD)Modeller for the numerical computation of the radiation characteristics of the antenna is the theme of the work. The predicted results are verified experimentally and by IE3D TM simulation. The influence of the patch dimensions,feed configurations,feed dimensions and feed positions upon the radiation performance of the antenna is studied in detail. Octagonal Microstrip Antenna configurations suitable for Mobile-Bluetooth application is dealt in detail. A simple design formula for the regular Octagonal geometry is also presented. A compact planar multi band antenna for GPS/DCS/2.4/5.8GHz WLAN application is included as appendix A. Planar near field measurement technique is explained in appendix B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the exhaustive theoretical and experimental investigations performed on Printed Monopole Antennas loaded with different geometries .The work presented in this thesis describes the development of a 3D- FDTD(Finite Difference Time Domain) Modeller using MATLAB for the numerical computation of the radiation characteristics of the antenna. The predicted results are verified experimentally and also through simulation using Ansoft HFSS.The effect of top loading of the monopole with different geometries ,the dimensions of the loading patch and ground plane and the material parameters of the dielectric substrate upon the radiation performance of the antenna is studied in detail. Optimized Printed Monopole antennas suitable for Ultra Wide Band (UWB) applications have been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the author proposes a new geometry DR antenna-the Hexagonal Dielectric Resonator Antenna(HDRA)-capable of multiple frequency operation on a single feed of excitation.This avoids the conventional use of miniaturizes the structure.The properties of the HDRA on microstrip as well as coaxial feeding have been studied.The analysis of radiation characteristics indicates a gain comparable with other shapes.The antenna is capable of providing efficiency around 98%.The simulation using HFSS also yields results in conformity with the experimental results.Mode analysis is carried out and the modes are identified.The determination of the reflection characteristics through theoretical analysis using FDTD validates the multifrequency operation of the antenna,The antenna finds application in DCT,PCS and WLAN bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active microwave imaging is explored as an imaging modality for early detection of breast cancer. When exposed to microwaves, breast tumor exhibits electrical properties that are significantly different from that of healthy breast tissues. The two approaches of active microwave imaging — confocal microwave technique with measured reflected signals and microwave tomographic imaging with measured scattered signals are addressed here. Normal and malignant breast tissue samples of same person are subjected to study within 30 minutes of mastectomy. Corn syrup is used as coupling medium, as its dielectric parameters show good match with that of the normal breast tissue samples. As bandwidth of the transmitter is an important aspect in the time domain confocal microwave imaging approach, wideband bowtie antenna having 2:1 VSWR bandwidth of 46% is designed for the transmission and reception of microwave signals. Same antenna is used for microwave tomographic imaging too at the frequency of 3000 MHz. Experimentally obtained time domain results are substantiated by finite difference time domain (FDTD) analysis. 2-D tomographic images are reconstructed with the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development and analysis of an Isosceles Trapezoidal Dielectric Resonator Antenna (ITDRA) by realizing different DR orientations with suitable feed configurations enabling it to be used as multiband, dual band dual polarized and wideband applications. The motivation for this work has been inspired by the need for compact, high efficient, low cost antenna suitable for multi band application, dual band dual polarized operation and broadband operation with the possibility of using with MICs, and to ensure less expensive, more efficient and quality wireless communication systems. To satisfy these challenging demands a novel shaped Dielectric Resonator (DR) is fabricated and investigated for the possibility of above required properties by trying out different orientations of the DR on a simple microstrip feed and with slotted ground plane as well. The thesis initially discusses and evaluates recent and past developments taken place within the microwave industry on this topic through a concise review of literature. Then the theoretical aspects of DRA and different feeding techniques are described. Following this, fabrication and characterization of DRA is explained. To achieve the desired requirements as above both simulations and experimental measurements were undertaken. A 3-D finite element method (FEM) electromagnetic simulation tool, HFSSTM by Agilent, is used to determine the optimum geometry of the dielectric resonator. It was found to be useful in producing approximate results although it had some limitations. A numerical analysis technique, finite difference time domain (FDTD) is used for validating the results of wide band design at the end. MATLAB is used for modeling the ITDR and implementing FDTD analysis. In conclusion this work offers a new, efficient and relatively simple alternative for antennas to be used for multiple requirements in the wireless communication system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author presents the development of a new dielectric resonator antenna(DRA) suitable for wideband wireless communication applications.The design comprises of a simple cylindrical dielectric resonator (DR) and a microstrip feed, in a low radiation-Q structure,enabling wide impedance bandwidth.The radiation pattern is conical shaped,resulted from thew low-Q structure.Dielectric constant of the DR,its dimensions and topological parameters of the feed line are the major design parameters of the antenna.By proper selection of these parameters,the DRA can be operated over a wideband width covering multiple wireless applications.The antenna is simulated using Ansoft HFSS TM and measured using HP 8510C vector network analyser.Some of the measured results are confirmed by using the Finite Difference Time Domain(FDTD) technique implemented in MATLAB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis relates to the investigations carried out on Rectangular Dielectric Resonator Antenna configurations suitable for Mobile Communication applications. The main objectives of the research are to: - numerically compute the radiation characteristics of a Rectangular DRA - identify the resonant modes - validate the numerically predicted data through simulation and experiment 0 ascertain the influence of the geometrical and material parameters upon the radiation behaviour of the antenna ° develop compact Rectangular DRA configurations suitable for Mobile Communication applications Although approximate methods exist to compute the resonant frequency of Rectangular DRA’s, no rigorous analysis techniques have been developed so far to evaluate the resonant modes. In this thesis a 3D-FDTD (Finite Difference Time Domain) Modeller is developed using MATLAB® for the numerical computation of the radiation characteristics of the Rectangular DRA. The F DTD method is a powerful yet simple algorithm that involves the discretimtion and solution of the derivative form of Maxwell’s curl equations in the time domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dual port dual polarized octagonal microstrip patch antenna suitable for dual band applications is discussed theoretically and experimentally. The antenna exhibits good impedance bandwidth, gain and broad radiation patterns. Parameters predicted by the Conformal Finite Difference Time Domain algorithm show good agreement with the simulated results and experimental observations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm