985 resultados para DECIMAL NUMERATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2013, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2008, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, vegetation cover was estimated only once in Septemper just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2002, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2003, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2003, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2005, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2005, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2006, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2006, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2007, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2004, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2004, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PEREIRA, Edinete do Nascimento et al. Classificação bibliográfica: as diversas contribuições para o tratamento da informação. In: SEMINÁRIO DE PESQUISA DO CCSA, 15., 2009. Anais... Natal: UFRN, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta nación nuestra vive entre el dolor y el sufrimiento, en medio de un paraíso natural. Llevamos ya varios años, lustros, tratando de darnos una explicación que nos ayude a comprender por qué somos así, para tratar de cambiar nuestros comportamientos de tal forma que todos podamos vivir dignamente como seres humanos. Y esos esfuerzos han sido de diversa índole, desde diversas disciplinas, pero aunque en los últimos tiempos disponemos de una mayor lucidez para entendernos como sociedad aún distamos mucho de que ese conocimiento se traduzca en unas fórmulas más eficaces que nos permitan vivir en paz. Entre las diversas explicaciones que se han dado acerca de la época de dificultades que nos ha tocado vivir a los colombianos en los últimos decenios, les concedo una mayor pertinencia a aquellas que argumentan que la nuestra es una crisis generada en buena parte, por un proceso de modernización acelerado, que ha transformado de manera radical las organizaciones sociales, los sistemas económicos, las instituciones políticas y ante todo los referentes culturales que orientan los comportamientos de los ciudadanos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En las últimas tres décadas, el mundo ha experimentado muchos cambios en su actividad económica y en la naturaleza de su economía. Los países se están vinculando de manera más estrecha por medio del intercambio y las finanzas internacionales: un país que solía ser un acreedor grande, Estados Unidos, es ahora el país deudor más grande del mundo; muchos de los países en desarrollo tienen constantes problemas de desarrollo y cantidades relativamente grandes de deuda externa. En respuesta a la naturaleza cambiante de los problemas económicos mundiales, hay evidencias de que han aumentado tanto los convenios comerciales bilaterales entre grandes socios comerciales como las tendencias hacia los convenios comerciales regionales. Con el surgimiento de una Europa más grande e integrada, por una parte, de iniciativas de integración económica en el hemisferio occidental y de mayor peso de los países asiáticos, por otra, se evidencia la evolución hacia un sistema comercial mundial dominado por tres grandes bloques comerciales: el americano, el europeo y el asiático.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El desarrollo sostenible ha establecido el principio de la protección intergeneracional de los recursos naturales, con el fin que las generaciones futuras puedan disfrutar de él, en las mismas condiciones y nivel que las generaciones precedentes. Ante esta definición, nos encontramos como generación con una gran responsabilidad en nuestras manos, debemos recibir unos recursos naturales agotados, estropeados y en ocasiones inexistentes, y entregarlos en similares condiciones y en general, aplicando el principio de mejorarlos. Esto exige retos de diferentes disciplinas, como son académicos, de investigación, de tecnología, pero sobre todo de cultura; la forma como percibimos, usamos y entregamos los recursos naturales, después de habernos aprovechado de ellos, de haberlos usado en los procesos productivos o simplemente en nuestro hogar. La cultura hacia lo ambiental, incluye también la cultura empresarial. El desarrollo sostenible es el resultado de un equilibrio entre tres principios: la disponibilidad de los recursos naturales como son, cantidad y calidad del agua, lo mismo de la tierra, el aire y la biodiversidad; la calidad de vida de la gente en cuanto al desarrollo social y la calidad o nivel económico de la región o el sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toda empresa para su funcionamiento está adquiriendo una gran cantidad de información externa (aquella que no ha sido generada dentro de la misma) por diferentes vías, con un grado variable de satisfacción de sus necesidades, tanto percibidas como latentes. Este estudio pretende determinar aquellas que no están siendo cubiertas actualmente por ningún servicio y también, aunque de manera indirecta, busca establecer cómo mejorar los servicios ya existentes en las empresas de la ciudad de Cali con los mayores activos. Generalmente, toda empresa usa la información para la solución de problemas empresariales, o sea, de los problemas y retos que existen en la producción de riqueza social mediante el proceso de agregar valor a un producto o servicio. Es apenas obvio que la misma información no siempre sirve ni para todas las empresas de un sector ni para todas sus dependencias, ni en todas las ocasiones. Para ello, este estudio pretende conocer las características y atributos de la información requerida, por medio de una muestra representativa de las principales empresas de Cali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un análisis de la situación actual de la economía chilena, requiere efectuar un examen de su desarrollo y evolución para comprender mejor las políticas aplicadas y hacer una evaluación objetiva de sus logros, como también de sus limitaciones. Las profundas transformaciones experimentadas en la economía chilena en las últimas dos décadas, le han permitido al país avanzar en un proceso de crecimiento y desarrollo sostenido. No ha sido sin embargo un proceso uniforme. Es necesario distinguir las diversas etapas por las que ha atravesado el modelo de economía social de mercado vigente hoy en Chile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este caso se presentan las siguientes situaciones : La empresa cuenta con una buena posición e imagen en el negocio de los muebles. Un mercado altamente competitivo. Automatización de Oficinas S.A. posee un producto con altos estándares de calidad. La empresa han presentado una disminución en los márgenes rentabilidad manejados. DESCRIPCION : El caso muestra la situación de la empresa Automatización de Oficinas S.A., una empresa de gran trayectoria nacional, orientada a la comercialización de muebles y equipos para oficina. A principios de la década pasada comenzó a comercializar microcomputadoras y elementos de conectividad de redes, beneficios de importación que le otorgaba ser exportador de muebles. En el momento en que se abren las importaciones, más de doscientas empresas entran a competir en el mercado de los microcomputadores, llegando incluso a manejar márgenes de hasta el 10 por ciento.