923 resultados para D-glucose and N-acetylglucosamine
Resumo:
Tese submetida à Universidade de Lisboa, Instituto Superior Técnico e aprovada em provas públicas para a obtenção do Grau de Doutor em Sistemas Sustentáveis de Energia.
Resumo:
Objective: This study was performed to detect the expression of vitamin D receptor (VDR) and cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1) in 24 end stage renal disease (ESRD) patients and 24 healthy controls. Method: In this study, 24 ESRD patients and 24 healthy controls were included. Results: In our study, the levels of VDR in patients with ESRD were reduced when compared with those from healthy controls (5.20±0.32 vs 8.59±1.03; P﹤0.01). However, the levels of CYP24A1 in ESRD patients were increased than those from healthy controls (50.18±21 vs 7.78±1.31; P﹤0.01). Correlation analysis showed that VDR levels were negatively correlated with CYP24A1 (r=-0.723; P﹤0.01). Conclusion: VDR levels were reduced and CYP24A1 levels were increased in patients with ESRD, and VDR levels were negatively correlated with CYP24A1.
Resumo:
Nutrient loading has been linked with severe water quality impairment, ranging from hypoxia to increased frequency of harmful algal blooms (HABs), loss of fisheries, and changes in biodiversity. Waters around the globe are experiencing deleterious effects of eutrophication; however, the relative amount of nitrogen (N) and phosphorus (P) reaching these waters is not changing proportionately, with high N loads increasingly enriched in chemically-reduced N forms. Research involving two urban freshwater and nutrient enriched systems, the Anacostia River, USA, a tributary of the Potomac River feeding into the Chesapeake Bay, and West Lake, Hangzhou, Zhejiang Province, China, was conducted to assess the response of phytoplankton communities to changing N-form and N/P-ratios. Field observations involving the characterization of ambient phytoplankton communities and N-forms, as well as experimental (nutrient enrichment) manipulations were used to understand shifts in phytoplankton community composition with increasing NH4+ loads. In both locations, a >2-fold increase in ambient NH4+:NO3- ratios was followed by a shift in the phytoplankton community, with diatoms giving way to chlorophytes and cyanobacteria. Enrichment experiments mirrored this, in that samples enriched with NH4+ lead to increased abundance of chlorophytes and cyanobacteria. This work shows that in both of these systems experiencing nutrient enrichment that NH4+ supports communities dominated by more chlorophytes and cyanobacteria than other phytoplankton groups.
Resumo:
This dissertation consists of two chapters of theoretical studies that investigate the effect of financial constraints and market competition on research and development (R&D) investments. In the first chapter, I explore the impact of financial constraints on two different types of R&D investments. In the second chapter, I examine the impact of market competition on the relationship between financial constraints and R&D investments. In the first chapter, I develop a dynamic monopoly model to study a firm’s R&D strategy. Contrary to intuition, I show that a financially constrained firm may invest more aggressively in R&D projects than an unconstrained firm. Financial constraints introduce a risk that a firm may run out of money before its project bears fruit, which leads to involuntary termination on an otherwise positive-NPV project. For a company that relies on cash flow from assets in place to keep its R&D project alive, early success can be relatively important. I find that when the discovery process can be expedited by heavier investment (“accelerable” projects), a financially constrained company may find it optimal to “over”-invest in order to raise the probability of project survival. The over-investment will not happen if the project is only “scalable” (investment scales up payoffs). The model generates several testable implications regarding over-investment and project values. In the second chapter, I study the effects of competition on R&D investments in a duopoly framework. Using a homogeneous duopoly model where two unconstrained firms compete head to head in an R&D race, I find that competition has no effect on R&D investment if the project is not accelerable, and the competing firms are not constrained. In a heterogeneous duopoly model where a financially constrained firm competes against an unconstrained firm, I discover interesting strategic interactions that lead to preemption by the constrained firm in equilibrium. The unconstrained competitor responds to its constrained rival’s investment in an inverted-U shape fashion. When the constrained competitor has high cash flow risk, it accelerates the innovation in equilibrium, while the unconstrained firm invests less aggressively and waits for its rival to quit the race due to shortage of funds.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
Electrical properties of polycrystalline gas sensors are analyzed by d.c. and a.c. measurements. d.c. electrical conductivity values compared with those obtained by admittance spectroscopy methods help to obtain a detailed 'on line' analysis of conductivity-modulated gas sensors. The electrical behaviour of grain boundaries is obtained and a new design of sensors can be achieved by enhancing the activity of surface states in the detecting operation. A Schottky barrier model is used to explain the grain boundary action under the presence of surrounding gases. The height of this barrier is a function of gas concentration due to the trapping of excess charge generated by gas adsorption at the interface. A comparison between this dependence, and a plot of the real and imaginary components of the admittance versus frequency at different gas concentrations, provides information on the different parameters that play a role in the conduction mechanisms. These methods have been applied to the design of a CO sensor based on tin oxide films for domestic purposes, the characteristics of which are presented.
Resumo:
Aim To further elucidate the relationship between physical activity and several risk factors for development of diabetes (glucose, C-peptide and obesity) over time. Methods A prospective longitudinal study where physical activity was measured on 199 children from Kalmar and Linköping at age 8, and the same 107 children from Linköping again at age 12. Anthropometric data was collected and blood was analyzed for C-peptide and f-glucose. The children in the study were representative for the general Swedish child population, and on an average lean. Results High physical activity was related to lower C-peptide at age 8 and 12. This correlation was especially pronounced in boys, who also were more physically active than girls at both time points. The association seen at 8 years of age was similar at age 12 in most children. Children with higher BMI Z-Score had a higher fasting C-peptide (age 12) but linear regression showed that children with more steps per day were less likely to have a higher fasting C-peptide irrespective of BMI. Longitudinal follow-up showed that a decrease in physical activity increased insulin resistance and β-cell load. Conclusions Already in young children, physical activity improves insulin sensitivity and decreases the need of C-peptide over time. This seems to become even more pronounced with increasing age when children are followed longitudinally. Low physical activity increases the load on insulin producing β-cells, might increase the risk for both type 1- and 2 diabetes.
Resumo:
An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a) mtabolic pathways, b) detection times for various inoculum sizes, c) effect of filtration on reproducibility of results, d) influence of stress environment e) minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f) generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C) acetate, (U-14C) glycerol, (1-14C) palmitic acid, 1-14C) lauric acid, (U-14C) L-malic acid, (U-14C) D-glucose, and (U-14C) D-glucose, but not (1-14C) L-glucose, (U-14C) glycine, or (U-14C) pyruvate to 14CO2. By using either 14C-for-mate, (1-14C) palmitic acid, or (1-14C) lauric acid, 10(7) organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that D-maltose is the best inducer of the enzyme synthesis ( 7.05 U/ mg dry biomass at 48 h), while D-glucose and D-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with D-cellobiose. When oat spelt xylan was supplemented with D-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/ L, leading to a reduction of 60% on the enzyme production. on the other hand, when the xylan medium was supplemented with D- xylose ( 3.0 or 5.0 g/ L), this effect was more evident ( 80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/ L, induced xylanase production on the maltose medium. on this medium, the repressive effect of xylose, at 3.0 or 5.0 g/ L, was less expressive when compared to its effect on the xylan medium.
Resumo:
In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (=GGS1=FDP1=BYP1=CIF1=GLC6=TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and tile wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total B-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, ± 10 mm in a hxk1Δ hxk2Δ glk1Δ and 2-3 mM in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict Properly up to 50-fold higher hexokinase activity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)–carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates d-glucose and its nonmetabolizable analog methyl α-d-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 ± 3.1 s−1. The response threshold was <10 nM for glucose. Responses to methyl α-d-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP–CheW–CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.