930 resultados para Cyclic Polyketide Peroxides
Resumo:
A versatile approach for the enantioselective synthesis of functionalised beta-hydroxy N-acetylcysteamine thiol esters has been developed which allows the facile incorporation of isotopic labels. It has been shown that a remarkable reversal of selectivity occurs in the titanium mediated aldol reaction of the acyloxazolidone intermediate using either (S)- or (R)-tert-butyldimethylsilyloxybutanal. The aldol products are valuable intermediates in the synthesis of 4-hydroxy-6-substituted gamma-lactones.
Resumo:
It is shown, for a bounded weighted bilateral shift T acting on l(p)(Z), and for 1
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC50 values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Synthetic fragment peptides of glucose-dependent insulinotropic polypeptide (GIP) were evaluated for their ability to elevate cellular cAMP production and stimulate insulin secretion. In GIP receptor transfected CHL cells, GIP(4-42) and GIP(17-30) dose-dependently inhibited GIP-stimulated cAMP production (40 +/- 8%; p <0.01 and 15 +/- 6%; p <0.05, respectively), while GIP(1-16) exerted very weak agonist effects on cAMP production. In the clonal pancreatic beta-cell line, BRIN-BD11, GIP(1-16) demonstrated weak insulin releasing activity compared with native GIP. In contrast, GIP(4-42) and GIP (17-30) weakly antagonized the insulin releasing activity of the native peptide (23 +/- 6%; p <0.05 and 11 +/- 3%, respectively). These data demonstrate the critical role of the N-terminus and the involvement of regions of the C-terminal domain in generating full biological potency of GIP.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
The dinuclear, cyclic structural motif [Ag-2(diphosphine)(2)](2+), here termed the
Resumo:
The facile syntheses of 1,2- and 3,5-cyclic sulfite and sulfate furanoside diesters were conducted in molecular solvents and ionic liquids in the presence of immobilised morpholine. Molecular solvents and ionic liquids performed similarly with regards to overall yields. However, the use of ILs allowed for the reactions to be carried out under atmospheric conditions and showed good recyclability. Additionally, increases in product stability was achieved in ILs over organic solvents, in particular, in bis{(trifluoromethanesulfonyl)imide) and trispentafluoro-ethyltrifluorophosphate-based ionic liquids, which were also excellent media to control the hydrolysis of thionyl chloride and sulfuryl chloride. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two distinct systems for the rhodium-catalyzed enantioselective desymmetrization of meso-cyclic anhydrides have been developed. Each system has been optimized and are compatible with the use of in situ prepared organozinc reagents. Rhodium/PHOX species efficiently catalyze the addition of alkyl nucleophiles to glutaric anhydrides, while a rhodium/phosphoramidite system is effective in the enantioselective arylation of succinic and glutaric anhydrides.
Resumo:
cis-Dihydrodiol metabolites were obtained from dioxygenase-catalysed asymmetric dihydroxylations of. five monocyclic (azabiphenyl) and four tricyclic (azaphenanthrene) azaarene substrates. Enantiopurity values and absolute configuration assignments were determined using a combination of stereochemical correlation, X-ray crystallography and spectroscopy methods. The degree of regioselectivity found during cis-dihydroxylation of monocyclic azaarenes (2,3 bond >> 3,4 bond) and of tricyclic azaarenes (bay region > non-bay region bonds) was dependent on the type of dioxygenase used. The cis-dihydrodiol metabolite from an azaarene (3-phenylpyridine) was utilised in the chemoenzymatic synthesis of the corresponding trans-dihydrodiol.