633 resultados para Crystallinity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(o-methylaniline) (poly-o-toluidine, PTOL) was synthesized by chemical oxidation of o-toluidine with ammonium peroxydisulfate in an aqueous 1.0 mol L -1 HCl solution. The progress of polymerization was followed by measuring the open-circuit potential (OCP) of a Pt electrode immersed in the reaction medium with the polymerization time. The chemical synthesis of PTOL was carried out at different monomer:oxidant (M:O) molar ratios (4:1, 2:1, 1.5:1, 1:1, and 0.66:1), and the products obtained were characterized by infrared spectroscopy, gel permeation chromatography, and X-ray diffraction. The molecular weight and percentage of crystallinity of PTOL are higher for samples synthesized in an excess of the monomer, i.e. at higher M:O ratios. However, the yield of PTOL prepared at higher M:O ratios is considerably low, in particular at a 4:1 M:O ratio, which is the M:O ratio most commonly used in the literature to synthesize polyaniline and its derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid solution 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most widely investigated relaxor ceramic, because of its high dielectric constant and low sintering temperatures. PMN-PT powders containing single perovskite phase were prepared by using a Timodified columbite precursor obtained by the polymeric precursor method. Such precursor reacts directly with stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. The structural effects of K additive included in the columbite precursor and 0.9PMN-0.1PT powders were also studied. The phase formation at each processing step was verified by XRD analysis, being these results used for the structural refinement by the Rietveld method. It was verified the addition of K in the columbite precursor promotes a slight increasing in the powder crystallinity. There was not a decrease in the amount of perovskite phase PMN-PT for 1mol% of K, and the particle and grain size were reduced, making this additive a powerful tool for grain size control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter deals with the cellulose produced by the Glucanacetobacter xylinus strain, called bacterial cellulose, which is a remarkably versatile biomaterial usable in wide variety of domains, such as papermaking, optics, electronics, acoustics, and biomedical devices. Its unique structure shows entangled ultrafine fibers, which provide excellent mechanical strength, besides biodegradability, biocompatibility, high water-holding capacity, and high crystallinity. Some of its applications are described, such as complementary nutrition (. nata de coco), artificial temporary skin for wounds and burns, dental aid, artificial blood vessels and micronerve surgery, DNA separation, composite reinforcement, electronic paper, light emitting diodes, and fuel cell membranes. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40-50 of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. © 2011 S. Saska et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, cassava starch was modified by treatment with sodium hypochlorite (NaClO) at different concentrations (0.8, 2.0 and 5.0 % of active chlorine) and selected physicochemical properties of the oxidized starches were investigated. The native and modified samples were evaluated considering moisture, carboxyl content, apparent viscosity, susceptibility to syneresis, mid-infrared spectroscopy and crystallinity index. The treatment with NaClO resulted in alterations in carboxyl content of the oxidized starches that increased with increasing concentration of the oxidant. Oxidized starches also showed higher susceptibility to syneresis, as assessed by the release of liquid during freezing and thawing. Apparent viscosity analysis showed decrease in peak viscosity of the oxidized starches. X-ray diffractograms showed that the oxidation influenced the extent of cassava starch relative crystallinity found to lie between 34.4 % (native) and 39.9 % (2.0 % active chlorine). The infrared spectra are sensitive to structural changes on starch macromolecules and presented characteristic peaks as C-O-C of the six carbon glucose ring absorbs at 1,150-1,085 cm -1 and due to axial deformation these bands changed with the crystal structure of the starch samples. © 2012 Association of Food Scientists & Technologists (India).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starch is arguably one of the most actively investigated biopolymer in the world. In this study, the native (untreated) cassava starch granules (Manihot esculenta, Crantz) were hydrolyzed by standard hydrochloric acid solution at different temperatures (30 °C and 50 °C) and the hydrolytic transformations were investigated by the following techniques: simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), as well as non-contact atomic force microscopy (NC-AFM), X-ray diffraction (XRD) powder patterns, and rapid viscoamylographic analysis (RVA). After the treatment with hydrochloric acid at different temperatures, the thermal stability, a gradual loss of pasting properties (viscosity), alterations in the gelatinization enthalpy (ΔHgel), were observed. The use of NC-AFM and XRD allowed the observation of the surface morphology and topography of the starch granules and changes in crystallinity of the granules, respectively. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry-differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules' crystallinity. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)