761 resultados para Crista neural
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
Convolutional Neural Networks (CNN) have become the state-of-the-art methods on many large scale visual recognition tasks. For a lot of practical applications, CNN architectures have a restrictive requirement: A huge amount of labeled data are needed for training. The idea of generative pretraining is to obtain initial weights of the network by training the network in a completely unsupervised way and then fine-tune the weights for the task at hand using supervised learning. In this thesis, a general introduction to Deep Neural Networks and algorithms are given and these methods are applied to classification tasks of handwritten digits and natural images for developing unsupervised feature learning. The goal of this thesis is to find out if the effect of pretraining is damped by recent practical advances in optimization and regularization of CNN. The experimental results show that pretraining is still a substantial regularizer, however, not a necessary step in training Convolutional Neural Networks with rectified activations. On handwritten digits, the proposed pretraining model achieved a classification accuracy comparable to the state-of-the-art methods.
Resumo:
This thesis work studies the modelling of the colour difference using artificial neural network. Multilayer percepton (MLP) network is proposed to model CIEDE2000 colour difference formula. MLP is applied to classify colour points in CIE xy chromaticity diagram. In this context, the evaluation was performed using Munsell colour data and MacAdam colour discrimination ellipses. Moreover, in CIE xy chromaticity diagram just noticeable differences (JND) of MacAdam ellipses centres are computed by CIEDE2000, to compare JND of CIEDE2000 and MacAdam ellipses. CIEDE2000 changes the orientation of blue areas in CIE xy chromaticity diagram toward neutral areas, but on the whole it does not totally agree with the MacAdam ellipses. The proposed MLP for both modelling CIEDE2000 and classifying colour points showed good accuracy and achieved acceptable results.
Resumo:
In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.
Resumo:
The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.
Resumo:
Psychopathy is associated with well-known characteristics such as a lack of empathy and impulsive behaviour, but it has also been associated with impaired recognition of emotional facial expressions. The use of event-related potentials (ERPs) to examine this phenomenon could shed light on the specific time course and neural activation associated with emotion recognition processes as they relate to psychopathic traits. In the current study we examined the PI , N170, and vertex positive potential (VPP) ERP components and behavioural performance with respect to scores on the Self-Report Psychopathy (SRP-III) questionnaire. Thirty undergraduates completed two tasks, the first of which required the recognition and categorization of affective face stimuli under varying presentation conditions. Happy, angry or fearful faces were presented under with attention directed to the mouth, nose or eye region and varied stimulus exposure duration (30, 75, or 150 ms). We found that behavioural performance to be unrelated to psychopathic personality traits in all conditions, but there was a trend for the Nl70 to peak later in response to fearful and happy facial expressions for individuals high in psychopathic traits. However, the amplitude of the VPP was significantly negatively associated with psychopathic traits, but only in response to stimuli presented under a nose-level fixation. Finally, psychopathic traits were found to be associated with longer N170 latencies in response to stimuli presented under the 30 ms exposure duration. In the second task, participants were required to inhibit processing of irrelevant affective and scrambled face distractors while categorizing unrelated word stimuli as living or nonliving. Psychopathic traits were hypothesized to be positively associated with behavioural performance, as it was proposed that individuals high in psychopathic traits would be less likely to automatically attend to task-irrelevant affective distractors, facilitating word categorization. Thus, decreased interference would be reflected in smaller N170 components, indicating less neural activity associated with processing of distractor faces. We found that overall performance decreased in the presence of angry and fearful distractor faces as psychopathic traits increased. In addition, the amplitude of the N170 decreased and the latency increased in response to affective distractor faces for individuals with higher levels of psychopathic traits. Although we failed to find the predicted behavioural deficit in emotion recognition in Task 1 and facilitation effect in Task 2, the findings of increased N170 and VPP latencies in response to emotional faces are consistent wi th the proposition that abnormal emotion recognition processes may in fact be inherent to psychopathy as a continuous personality trait.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Tesis (Doctorado en Ciencias con Orientación en Morfología) UANL
Resumo:
Tesis (Doctor en Ciencias con Orientación en Procesos Sustentables) UANL, 2013.
Resumo:
Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
La méditation par le ‘mindfulness’ favorise la stabilité émotionelle, mais les mécanismes neuroneux qui sous-tendent ces effets sont peu connus. Ce projet investiga l’effet du ‘mindfulness’ sur les réponses cérébrales et subjectives à des images négatives, positives et neutres chez des méditants expérimentés et des débutants au moyen de l’imagerie par résonance magnétique fonctionnelle (IRMf). Le ‘mindfulness’ atténua l’intensité émotionelle via différents mécanismes cérébraux pour chaque groupe. Comparés aux méditants, les débutants manifestèrent une déactivation de l’amygdale en réponse aux stimuli émotifs durant le ‘mindfulness’. Comparés aux débutants, les méditants exhibèrent une déactivation de régions du réseau du mode par défaut (RMD) pendant le ‘mindfulness’ pour tous stimuli (cortex médian préfrontal [CMP], cortex cingulaire postérieur [CCP]). Le RMD est constitué de régions fonctionnellement connectées, activées au repos et déactivées lors de tâches explicites. Cependant, nous ne connaissons pas les impacts de l’entraînement par la méditation sur la connectivité entre régions du RMD et si ces effets persistent au-delà d’un état méditatif. La connectivité fonctionnelle entre régions du RMD chez les méditants et débutants au repos fut investiguée au moyen de l’IRMf. Comparés aux débutants, les méditants montrèrent une connectivité affaiblie entre subdivisions du CMP, et une connectivité accrue entre le lobule pariétal inférieur et trois regions du RMD. Ces résultats reflètent que les bienfaits immédiats du ‘mindfulness’ sur la psychopathologie pourraient être dûs à une déactivation de régions limbiques impliquées dans la réactivité émotionelle. De plus, les bienfaits à long-terme de la méditation sur la stabilité émotionelle pourrait être dûs à une déactivation de régions corticales et cingulaires impliquées dans l’évaluation de la signification émotive et une connectivité altérée entre régions du RMD à l’état de repos.
Resumo:
La voie de la polarité planaire cellulaire (PCP), aussi connue sous le nom de la voie non-canonique du Frizzled/Dishevelled, contrôle le processus morphogénétique de l'extension convergente (CE) qui est essentiel pour la gastrulation et la formation du tube neural pendant l'embryogenèse. La signalisation du PCP a été récemment associée avec des anomalies du tube neural (ATN) dans des modèles animaux et chez l'humain. Prickle1 est une protéine centrale de la voie PCP, exprimée dans la ligne primitive et le mésoderme pendant l'embryogenèse de la souris. La perte ou le gain de fonction de Prickle1 mène à des mouvements de CE fautifs chez le poisson zèbre et la grenouille. PRICKLE1 interagit directement avec deux autres membres de la voie PCP, Dishevelled et Strabismus/Vang. Dans notre étude, nous avons investigué le rôle de PRICKLE1 dans l'étiologie des ATN dans une cohorte de 810 patients par le re-séquençage de son cadre de lecture et des jonctions exon-intron. Le potentiel pathogénique des mutations ainsi identifiées a été évalué par des méthodes bioinformatiques, suivi par une validation fonctionnelle in vivo dans un système poisson zèbre. Nous avons identifié dans notre cohorte un total de 9 nouvelles mutations dont sept: p.Ile69Thr, p.Asn81His, p.Thr275Met, p.Arg682Cys et p.Ser739Phe, p.Val550Met et p.Asp771Asn qui affectent des acides aminés conservés. Ces mutations ont été prédites in silico d’affecter la fonction de la protéine et sont absentes dans une large cohorte de contrôles de même origine ethnique. La co-injection de ces variantes avec le gène prickle1a de type sauvage chez l’embryon de poisson zèbre a démontré qu’une mutation, p.Arg682Cys, modifie dans un sens négatif le phénotype du défaut de la CE produit par pk1 de type sauvage. Notre étude démontre que PK1 peut agir comme facteur prédisposant pour les ATN chez l’humain et élargit encore plus nos connaissances sur le rôle des gènes de la PCP dans la pathogenèse de ces malformations.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les anomalies du tube neural (ATN), incluant l'anencéphalie et le spina-bifida, représentent un groupe de malformations congénitales très fréquentes chez l'homme. Ces anomalies sont causées par un défaut partiel ou complet de la fermeture du tube neurale au cours de l'embryogenèse. Les ATN ont une étiologie complexe et multifactorielle impliquant des facteurs environnementaux et génétiques. La voie de signalisation non-canonique du Frizzled (Fz)/Dishevelled (Dvl) contrôle la polarité cellulaire planaire (PCP) et le processus morphogénétique appelé l’extension convergente qui est essentiel pour la gastrulation et la fermeture du tube neural. Très important, des mutations des gènes de cette voie étaient fortement associées aux ATN chez la souris et l’humain. Scribble est un gène de la voie PCP qui cause une sévère ATN chez la souris Circletail. Notre étude vise à analyser le rôle de SCRIBBLE1 dans les ATN humains par des analyses de séquence de son cadre de lecture et ses jonctions exon-introns. Notre étude comporte 396 patients recrutés au Centre Spina Bifida de l’hôpital Gaslini en Gènes, Italie et 83 patients recrutés au Centre Spina Bifida de l’hôpital Sainte Justine. Les patients sont affectés par plusieurs formes d’ATN. Nous avons identifié neuf mutations rares et non synonymes chez 10 patients, p.Asp93Ala (c. 435G>A), p.Gly145Arg (c. 278A>C), p.Gly263Ser (c. 786C>A), p.Gly469Ser (c. 1405G>A), p.Pro649His (c. 1946C>A), p.Gln808His (c. 2424G>T), p.Val1066Met (c. 3196G>A), p.Arg1150Gln (c. 3480G>A) et p.Thr1422Met (c. 4266C>T). Cinque mutations, p.Gly263Ser, p.Pro649His, p.Gln808His, p.Arg1150Gln, p.Thr1422Met, étaient absentes dans les contrôles analysés et prédites d’être pathogéniques in silico. Cette étude montre que des mutations rares dans SCRIB1 pourraient augmenter le risque des ATN dans une fraction des patients. L’identification des gènes prédisposant aux ATN nous aidera à mieux comprendre les mécanismes pathogéniques impliqués dans ces maladies.