977 resultados para Covariance matrices
Resumo:
Incluye bibliografía
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which does not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show the modal transformation matrix of a hypothetical two-phase obtained with numerical and analytical procedures. It will be shown currents and voltage s at terminals of the line taking into account the use of modal transformation matrices obtained by using numerical and analytical procedures. © 2011 IEEE.
Resumo:
Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.
Resumo:
The chloropropyl silica gel was modified with octa(3-aminopropyl) octasilsesquioxane and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+) increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K) in the order of 103 L mol-1 suggested the high adsorbent capacity of the modified silica (SGAPC) for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel. © 2013 Devaney Ribeiro Do Carmo et al.
Resumo:
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The MRMAX chart is a single chart based on the standardized sample means and sample ranges for monitoring the mean vector and the covariance matrix of multivariate processes. User's familiarity with the computation of these statistics is a point in favor of the MRMAX chart. As a single chart, the recently proposed MRMAX chart is very appropriate for supplementary runs rules. In this article, we compare the supplemented MRMAX chart and the synthetic MRMAX chart with the standard MRMAX chart. The supplementary and the synthetic runs rules enhance the performance of the MRMAX chart. © 2013 Elsevier Ltd.
Resumo:
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.
Resumo:
Incluye Bibliografía
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)