929 resultados para Corneal limbal epithelial cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bronchial epithelium is a source of both α and β chemokines and, uniquely, of secretory component (SC), the extracellular ligand-binding domain of the polymeric IgA receptor. Ig superfamily relatives of SC, such as IgG and α2-macroglobulin, bind IL-8. Therefore, we tested the hypothesis that SC binds IL-8, modifying its activity as a neutrophil chemoattractant. Primary bronchial epithelial cells were cultured under conditions to optimize SC synthesis. The chemokines IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene α, and RANTES were released constitutively by epithelial cells from both normal and asthmatic donors and detected in high m.w. complexes with SC. There were no qualitative differences in the production of SC-chemokine complexes by epithelial cells from normal or asthmatic donors, and in all cases this was the only form of chemokine detected. SC contains 15% N-linked carbohydrate, and complete deglycosylation with peptide N-glycosidase F abolished IL-8 binding. In micro-Boyden chamber assays, no IL-8-dependent neutrophil chemotactic responses to epithelial culture supernatants could be demonstrated. SC dose-dependently (IC50 ∼0.3 nM) inhibited the neutrophil chemotactic response to rIL-8 (10 nM) in micro-Boyden chamber assays and also inhibited IL-8-mediated neutrophil transendothelial migration. SC inhibited the binding of IL-8 to nonspecific binding sites on polycarbonate filters and endothelial cell monolayers, and therefore the formation of haptotactic gradients, without effects on IL-8 binding to specific receptors on neutrophils. The data indicate that in the airways IL-8 may be solubilized and inactivated by binding to SC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes – nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor – NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the emerging epidemic of renal disease in HIV+ patients and the fact that HIV DNA and RNA persist in the kidneys of HIV+ patients despite therapy, it is necessary to understand the role of direct HIV-1 infection of the kidney. HIV-associated kidney disease pathogenesis is attributed in large part to viral proteins. Expression of Vpr in renal tubule epithelial cells (RTECs) induces G2 arrest, apoptosis and polyploidy. The ability of a subset of cells to overcome the G2/M block and progress to polyploidy is not well understood. Polyploidy frequently associates with a bypass of cell death and disease pathogenesis. Given the ability of the kidney to serve as a unique compartment for HIV-1 infection, and the observed occurrence of polyploid cells in HIV+ renal cells, it is critical to understand the mechanisms and consequences of Vpr-induced polyploidy.

Here I determined effects of HIV-1 Vpr expression in renal cells using highly efficient transduction with VSV.G pseudotyped lentiviral vectors expressing Vpr in the HK2 human tubule epithelial cell line. Using FACS, fluorescence microscopy, and live cell imaging I show that G2 escape immediately precedes a critical junction between two distinct outcomes in Vpr+ RTECs: mitotic cell death and polyploidy. Vpr+ cells that evade aberrant mitosis and become polyploid have a substantially higher survival rate than those that undergo complete mitosis, and this survival correlates with enrichment for polyploidy in cell culture over time. Further, I identify a novel role for ATM kinase in promoting G2 arrest escape and polyploidy in this context. In summary, my work identifies ATM-dependent override of Vpr-mediated G2/M arrest as a critical determinant of cell fate Vpr+ RTECs. Further, our work highlights how a poorly understood HIV mechanism, ploidy increase, may offer insight into key processes of reservoir establishment and disease pathogenesis in HIV+ kidneys.