843 resultados para Copper Amine Oxidase
Resumo:
A study was conducted to evaluate the predictive diagnostic value of different copper (Cu) parameters as indicators of average daily gain (ADG) in growing calves. The effects in calves of cow Cu supplementation in the last one-third gestation period were also evaluated. Five supplementation trials, with a total of 300 calves, were carried out. Two groups of 30 calves were randomly assigned to each trial, one group was parenterally supplemented (SG) and the other was not supplemented (NSG). Trials began when calves were three-month-old and ended at weaning time. At each sampling calves were weighed and blood was taken to determine Cu concentrations in plasma, Whole Blood (WB), Red Cells (RC) and Packed Cell Volume (PCV). Liver samples from six animals of each group were taken both at the beginning and at the end of the trial. In two trials the mothers of the SG received Cu supplementation at the last one- third gestation period. Four of the five trials exhibited low ADG in the NSGs. In these groups, plasma Cu concentration decreased rapidly before low ADG was detected, which occurred with values remaining below 25µg/dl. The decrease of RC Cu concentration was considerably slow. WB showed an intermediate position. PCV in the SGs was higher than in the NSGs in all trials. Cow supplementation was insufficient to generate a liver storage able to last after calves reached the 3 months of age. These data could be useful to predict the risk of low ADG in grazing calves.
Resumo:
The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu) concentration in clinical cases of acute copper poisoning (ACP). A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million) was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.
Resumo:
Herbicides that inhibit the enzyme protoporphyrinogen oxidase (PROTOX) are usually effective to control dicotyledonous weeds and their agronomic efficacy is affected by environmental and physiological factors. The objective of this review is to summarize the knowledge of those factors available in the scientific literature in the last decade. Environmental factors that influence PROTOX inhibitors include temperature, irradiance and relative humidity. The most relevant physiological factors are the activity of enzymes that can detoxify herbicides and also of enzymes that mitigate the effects of oxidative stress in plants. The study also suggests some possible management strategies that could optimize the activity of PROTOX-inhibiting herbicides.
Resumo:
The aims of this study were to evaluate the effectiveness of diquat, copper hydroxide, copper oxychloride and their associations diquat + 0.1% copper oxychloride and diquat + 0.1% copper hydroxide to control Cerathophyllum demersum. Therefore, the concentrations used were 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5 mg L-1 oxychloride and copper hydroxide and 0.2, 0.4, 0.8 and 1.2 mg L-1 diquat and their associations with 0.1% copper oxychloride and 0.1% copper and a control hydroxide. The experimental design was completely randomized with ten replications for 45 days. For evaluation we used a scale of 0-100% control of notes and rated the weight (g) and length (cm) of pointers at the end of the trial period. Diquat showed 100% efficacy at 30 DAA, associations in 21 DAA and copper sources promoted regrowth of C. demersum. Diquat and its associations were more effective in controlling C. demersum. The use of herbicide in combination with a copper source is more efficient for the control of submerged weeds because it potentiates the effect of the herbicide in weed control
Resumo:
Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.
Resumo:
A strain of Xanthomonas campestris pv. vesicatoria showing resistance to 1.2 mM cupric sulfate was analyzed by atomic absorption spectroscopy and ESI (electron spectrophotometry imaging). Accumulation of copper was detected in the periphery of the cell membrane region, suggesting that the mechanism of copper resistance is similar to that previously described for Pseudomonas species. The ESI technique was used to detect copper in the membrane region. Copper-resistance in X. campestris pv. vesicatoria 484 is inducible and occurs by accumulation of the metal and not by efflux mechanism as has been suggested. The growth curve also showed that this system is inducible.
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.
Resumo:
Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.
Resumo:
It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM). The present study uses a new approach (HPLC) by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance). The study involved two experiments: i) saline or midazolam (0.5 mg/kg) before the first trial, and ii) saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%). Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%), amygdala (78.96%), dorsal hippocampus (70.33%), and nucleus accumbens (73.58%) of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM). A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05). These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.
Resumo:
Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Resumo:
The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and quercetin (for Ehrlich carcinoma) were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 ± 1.25 µM, and against K562 leukemia, with IC50 = 14.11 ± 1.39 µM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 ± 2.3 µM), although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 µM) was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 µM and a partial inhibitory action was observed for lapachol and methoxylapachol.
Resumo:
Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.
Resumo:
As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.
Resumo:
Com o objetivo de caracterizar, por via imunoquímica, a enzima ACC (ácido 1-carboxílico-1-aminociclopropano) oxidase em frutos climatéricos, foram preparados anticorpos policlonais específicos para esta proteína. Utilizou-se, como antígeno, uma proteína recombinante, produzida em Escherichia coli K38/pGP1,2, contendo o vetor de expressão pT7-7A4 no qual foi inserido um clone de DNA da ACC oxidase. A especificidade dos anticorpos foi demonstrada pela técnica de "Western blot", a partir de extratos protéicos de maçãs e tomates em diferentes estágios de maturação. Verificou-se que o aumento da produção de etileno, quando os frutos passaram do estágio pré-climatérico para o climatérico, está diretamente correlacionada com o aumento da síntese da ACC oxidase. Em estágios de maturação mais avançados houve uma redução da produção de etileno e da atividade ACC oxidase, mas esta proteína continuava presente. Quando o "Western blot" foi realizado com tomates transgênicos, onde a produção de etileno e a síntese da ACC oxidase foram inibidos em mais de 95%, nenhuma reação imunoquímica foi detectada. O conjunto de resultados obtidos indica que os anticorpos detectam especificamente ACC oxidase.
Resumo:
A composição química e bioquímica da manga, varia de acordo com as condições da cultura, variedade e estágio de maturação, geralmente contendo alto conteúdo de ácido ascórbico. Com o objetivo de estabelecer o papel da ascorbato oxidase [E.C.1.10.3.3], sobre os níveis de ácido ascórbico durante o processo de amadurecimento de manga (Mangífera índica L.) var. Haden, foram analisadas amostras da fruta correspondentes aos estágios verde maturo (zero) e armazenadas por 2, 4, 6, 8, 10, 12 e 14 dias a 20 ± 2oC. As amostras foram obtidas das polpas cortadas em pequenos cubos de aproximadamente 8 cm3 de 8 mangas com textura sem diferença significativa entre elas, medidas com auxílio de um penetrômetro Magness-Taylor. Em cada amostra foi determinada atividade de ascorbato oxidase para verificar sua participação em possíveis quedas de ácido ascórbico durante o amadurecimento das frutas. Também foram determinados periodicamente o teor de ácido ascórbico e o perfil sensorial durante o período de amadurecimento. A atividade enzimática foi determinada espectrofotometricamente a 245 nm 30oC, o ácido ascórbico foi analisado de acordo com a metodologia da AOAC modificada e a análise sensorial através de análise descritiva quantitativa. Os dados da análise sensorial foram analisados através de análise de variância (ANOVA), testes de médias de Tukey, análise de componentes principais e análise discriminante por passos. Durante o amadurecimento, a atividade da ascorbato oxidase aumentou e o teor de ácido ascórbico diminuiu, havendo significativa (p£0,05) correlação linear negativa (r=-0,98). Os termos descritores para a manga foram: sabor característico, aroma característico, acidez, adstringência, coloração amarela da polpa, doçura e suculência. O perfil sensorial apresentou significativa melhora com o amadurecimento. Todos os atributos sensoriais aumentaram significativamente (p£0,05) durante o amadurecimento das mangas, exceto acidez e adstringência.