983 resultados para Controllo moto macchina automatica packaging flessibile confezionamento
Resumo:
Oggi, grazie al continuo progredire della tecnologia, in tutti i sistemi di produzione industriali si trova almeno un macchinario che permette di automatizzare determinate operazioni. Alcuni di questi macchinari hanno un sistema di visione industriale (machine vision), che permette loro di osservare ed analizzare ciò che li circonda, dotato di algoritmi in grado di operare alcune scelte in maniera automatica. D’altra parte, il continuo progresso tecnologico che caratterizza la realizzazione di sensori di visione, ottiche e, nell’insieme, di telecamere, consente una sempre più precisa e accurata acquisizione della scena inquadrata. Oggi, esigenze di mercato fanno si che sia diventato necessario che macchinari dotati dei moderni sistemi di visione permettano di fare misure morfometriche e dimensionali non a contatto. Ma le difficoltà annesse alla progettazione ed alla realizzazione su larga scala di sistemi di visione industriali che facciano misure dimensioni non a contatto, con sensori 2D, fanno sì che in tutto il mondo il numero di aziende che producono questo tipo di macchinari sia estremamente esiguo. A fronte di capacità di calcolo avanzate, questi macchinari necessitano dell’intervento di un operatore per selezionare quali parti dell’immagine acquisita siano d’interesse e, spesso, anche di indicare cosa misurare in esse. Questa tesi è stata sviluppata in sinergia con una di queste aziende, che produce alcuni macchinari per le misure automatiche di pezzi meccanici. Attualmente, nell’immagine del pezzo meccanico vengono manualmente indicate le forme su cui effettuare misure. Lo scopo di questo lavoro è quello di studiare e prototipare un algoritmo che fosse in grado di rilevare e interpretare forme geometriche note, analizzando l’immagine acquisita dalla scansione di un pezzo meccanico. Le difficoltà affrontate sono tipiche dei problemi del “mondo reale” e riguardano tutti i passaggi tipici dell’elaborazione di immagini, dalla “pulitura” dell’immagine acquisita, alla sua binarizzazione fino, ovviamente, alla parte di analisi del contorno ed identificazione di forme caratteristiche. Per raggiungere l’obiettivo, sono state utilizzate tecniche di elaborazione d’immagine che hanno permesso di interpretare nell'immagine scansionata dalla macchina tutte le forme note che ci siamo preposti di interpretare. L’algoritmo si è dimostrato molto robusto nell'interpretazione dei diametri e degli spallamenti trovando, infatti, in tutti i benchmark utilizzati tutte le forme di questo tipo, mentre è meno robusto nella determinazione di lati obliqui e archi di circonferenza a causa del loro campionamento non lineare.
Resumo:
Questa tesi si basa su una serie di lavori precedenti, volti ad analizzare la correlazione tra i modelli AUML e le reti di Petri, per riuscire a fornire una metodologia di traduzione dai primi alle seconde. Questa traduzione permetterà di applicare tecniche di model checking alle reti così create, al fine di stabilire le proprietà necessarie al sistema per poter essere realizzato effettivamente. Verrà poi discussa un'implementazione di tale algoritmo sviluppata in tuProlog ed un primo approccio al model checking utilizzando il programma Maude. Con piccole modifiche all'algoritmo utilizzato per la conversione dei diagrammi AUML in reti di Petri, è stato possibile, inoltre, realizzare un sistema di implementazione automatica dei protocolli precedentemente analizzati, verso due piattaforme per la realizzazione di sistemi multiagente: Jason e TuCSoN. Verranno quindi presentate tre implementazioni diverse: la prima per la piattaforma Jason, che utilizza degli agenti BDI per realizzare il protocollo di interazione; la seconda per la piattaforma TuCSoN, che utilizza il modello A&A per rendersi compatibile ad un ambiente distribuito, ma che ricalca la struttura dell'implementazione precedente; la terza ancora per TuCSoN, che sfrutta gli strumenti forniti dalle reazioni ReSpecT per generare degli artefatti in grado di fornire una infrastruttura in grado di garantire la realizzazione del protocollo di interazione agli agenti partecipanti. Infine, verranno discusse le caratteristiche di queste tre differenti implementazioni su un caso di studio reale, analizzandone i punti chiave.
Resumo:
L’analisi istologica riveste un ruolo fondamentale per la pianificazione di eventuali terapie mediche o chirurgiche, fornendo diagnosi sulla base dell’analisi di tessuti, o cellule, prelevati con biopsie o durante operazioni. Se fino ad alcuni anni fa l’analisi veniva fatta direttamente al microscopio, la sempre maggiore diffusione di fotocamere digitali accoppiate consente di operare anche su immagini digitali. Il presente lavoro di tesi ha riguardato lo studio e l’implementazione di un opportuno metodo di segmentazione automatica di immagini istopatologiche, avendo come riferimento esclusivamente ciò che viene visivamente percepito dall’operatore. L’obiettivo è stato quello di costituire uno strumento software semplice da utilizzare ed in grado di assistere l’istopatologo nell’identificazione di regioni percettivamente simili, presenti all’interno dell’immagine istologica, al fine di considerarle per una successiva analisi, oppure di escluderle. Il metodo sviluppato permette di analizzare una ampia varietà di immagini istologiche e di classificarne le regioni esclusivamente in base alla percezione visiva e senza sfruttare alcuna conoscenza a priori riguardante il tessuto biologico analizzato. Nella Tesi viene spiegato il procedimento logico seguito per la progettazione e la realizzazione dell’algoritmo, che ha portato all’adozione dello spazio colore Lab come dominio su cu cui calcolare gli istogrammi. Inoltre, si descrive come un metodo di classificazione non supervisionata utilizzi questi istogrammi per pervenire alla segmentazione delle immagini in classi corrispondenti alla percezione visiva dell’utente. Al fine di valutare l’efficacia dell’algoritmo è stato messo a punto un protocollo ed un sistema di validazione, che ha coinvolto 7 utenti, basato su un data set di 39 immagini, che comprendono una ampia varietà di tessuti biologici acquisiti da diversi dispositivi e a diversi ingrandimenti. Gli esperimenti confermano l’efficacia dell’algoritmo nella maggior parte dei casi, mettendo altresì in evidenza quelle tipologie di immagini in cui le prestazioni risultano non pienamente soddisfacenti.
Resumo:
Scopo di questa tesi è analizzare e sviluppare la parte preposta al controllo dell’integrità dei dati (Check&SODA), facente parte di un nuovo plugin per piattaforma Eclipse che supporti il progettista durante le attività di progettazione con SODA, tramite una componente grafica Graph&SODA.