931 resultados para Control system design
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
Target of this book is to propose an approach for modelling drivetrain dynamics in order to design further a vibration control system of a hybrid bus. In this thesis two approaches are examined and compared. First model is obtained by theoretical means: drivetrain is represented as a system of rotating masses, which motion is described with differential equations. Second model is obtained using system identification method: mathematical description of the dynamic behavior of a system is formed based on measured input (torque) and output (speed) data. Then two models are compared and an optimal approach is suggested.
Resumo:
It is common knowledge of the world’s dependency on fossil fuel for energy, its unsustainability on the long run and the changing trend towards renewable energy as an alternative energy source. This aims to cut down greenhouse gas emission and its impact on the rate of ecological and climatic change. Quite remarkably, wind energy has been one of many focus areas of renewable energy sources and has attracted lots of investment and technological advancement. The objective of this research is to explore wind energy and its application in household heating. This research aims at applying experimental approach in real time to study and verify a virtually simulated wind powered hydraulic house heating system. The hardware components comprise of an integrated hydraulic pump, flow control valve, hydraulic fluid and other hydraulic components. The system design and control applies hardware in-the-loop (HIL) simulation setup. Output signal from the semi-empirical turbine modelling controls the integrated motor to generate flow. Throttling the volume flow creates pressure drop across the valve and subsequently thermal power in the system to be outputted using a heat exchanger. Maximum thermal power is achieved by regulating valve orifice to achieve optimum system parameter. Savonius rotor is preferred for its low inertia, high starting torque and ease of design and maintenance characteristics, but lags in power efficiency. A prototype turbine design is used; with power output in range of practical Savonius turbine. The physical mechanism of the prototype turbine’s augmentation design is not known and will not be a focus in this study.
Resumo:
This project aims to design and manufacture a mobile robot with two Universal Robot UR10 mainly used indoors. In order to obtain omni-directional maneuverability, the mobile robot is constructed with Mecanum wheels. The Mecanum wheel can move in any direction with a series of rollers attached to itself. These rollers are angled at 45º about the hub’s circumference. This type of wheels can be used in both driving and steering with their any-direction property. This paper is focused on the design of traction system and suspension system, and the velocity control of Mecanum wheels in the close-loop control system. The mechanical design includes selection of bearing housing, couplers which are act as connection between shafts, motor parts, and other needed components. The 3D design software SolidWorks is utilized to assemble all the components in order to get correct tolerance. The driving shaft is designed based on assembled structure via the software as well. The design of suspension system is to compensate the assembly error of Mecanum wheels to guarantee the stability of the robot. The control system of motor drivers is realized through the Robot Operating System (ROS) on Ubuntu Linux. The purpose of inverse kinematics is to obtain the relationship among the movements of all Mecanum wheels. Via programming and interacting with the computer, the robot could move with required speed and direction.
Resumo:
Press forming is nowadays one of the most common industrial methods in use for producing deeper trays from paperboard. Demands for material properties like recyclability and sustainability have increased also in the packaging industry, but there are still limitations related to the formability of paperboard. A majority of recent studies have focused on material development, but the potential of the package manufacturing process can also be improved by the development of tooling and process control. In this study, advanced converting tools (die cutting tools and the press forming mould) are created for production scale paperboard tray manufacturing. Also monitoring methods that enable the production of paperboard trays with enhanced quality, and can be utilized in process control are developed. The principles for tray blank preparation, including creasing pattern and die cutting tool design are introduced. The mould heating arrangement and determination of mould clearance are investigated to improve the quality of the press formed trays. The effect of the spring back of the tray walls on the tray dimensions can be managed by adjusting the heat-related process parameters and estimating it at the mould design stage. This enables production speed optimization as the process parameters can be adjusted more freely. Real-time monitoring of pressing force by using multiple force sensors embedded in the mould structure can be utilized in the evaluation of material characteristics on a modified production machinery. Comprehensive process control can be achieved with a combination of measurement of the outer dimensions of the trays and pressing force monitoring. The control method enables detection of defects and tracking changes in the material properties. The optimized converting tools provide a basis for effective operation of the control system.
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.
Resumo:
La monografía presenta la auto-organización sociopolítica como la mejor manera de lograr patrones organizados en los sistemas sociales humanos, dada su naturaleza compleja y la imposibilidad de las tareas computacionales de los regímenes políticos clásico, debido a que operan con control jerárquico, el cual ha demostrado no ser óptimo en la producción de orden en los sistemas sociales humanos. En la monografía se extrapola la teoría de la auto-organización en los sistemas biológicos a las dinámicas sociopolíticas humanas, buscando maneras óptimas de organizarlas, y se afirma que redes complejas anárquicas son la estructura emergente de la auto-organización sociopolítica.
Resumo:
La implementación del MCS es una necesidad que demandan las organizaciones en la medida en que incrementan de tamaño, pero la experiencia muestra que esta metodología tiene casos de éxito como de fracaso, por lo que es importante identificar y contemplar los factores que influyen en la implementación para que el sistema sea efectivo. Este proyecto pretende analizar las variables y herramientas para la implementación de un MCS en una organización. Para este análisis se hizo una amplia revisión literaria teórica y práctica. Finalmente el resultado que se obtuvo fue definir cuáles son los factores determinantes para la implementación de un MCS efectivo en una empresa.
Resumo:
Este trabajo pretende de una manera tanto teórica como práctica, estudiar la relación que pueda existir entre la interculturalidad y el Management Control System, para ello se realiza una revisión bibliográfica de los trabajos empíricos y teóricos desarrollados hasta el momento sobre el tema. Se comienza con la revisión de los diferentes conceptos que puedan hacer alusión a la interculturalidad, y los MCS (o contemple variables cercanas en relación a este), se delimita el tema y se procede a su clasificación hasta llegar a la estructuración de la definición de los constructos que integren los conceptos de interculturalidad y MCS. De igual manera, se operacionalizan las variables para poder generar un análisis practico utilizando estadística cuantitativa. Finalmente presentamos los resultados que demuestran el grado de importancia percibido por encuestados de filiales localizadas en diferentes países de Latino América de la empresa Agrocampo S.A.S, con el fin de presentar conclusiones que integren los dos temas de análisis.
Resumo:
Siguiendo un marco teórico integrado por varios autores entorno a los sistemas de control de gestión a lo largo de varias décadas, este trabajo pretende estudiar y contrastar la relación entre el desarrollo de dichos sistemas y los recursos y capacidades. Para tal fin, se desarrolló un estudio de caso en Teleperformance Colombia (TC), una empresa dedicada a prestación de servicio de tercerización de procesos o business process outsourcing. En el estudio se establecieron dos variables para evaluar el desarrollo de sistema de control de gestión: el diseño y el uso. A su vez, para cada uno de ellos, se definieron los indicadores y preguntas que permitieran realizar la observación y posterior análisis. De igual manera, se seleccionaron los recursos y capacidades más importantes para el desarrollo del negocio: innovación, aprendizaje organizacional y capital humano. Sobre estos se validó la existencia de relación con el SCG implementado en TC. La información obtenida fue analizada y contrastada a través de pruebas estadísticas ampliamente utilizadas en este tipo de estudios en las ciencias sociales. Finalmente, se analizaron seis posibles relaciones de las cuales, solamente se ratificó el relacionamiento positivo entre uso de sistema de control gestión y el recurso y capacidad capital humano. El resto de relacionamientos, refutaron los planteamientos teóricos que establecían cierta influencia de los sistemas de control de gestión sobre recursos y capacidades de innovación y aprendizaje organizacional.
Resumo:
The use of expert system techniques in power distribution system design is examined. The selection and siting of equipment on overhead line networks is chosen for investigation as the use of equipment such as auto-reclosers, etc., represents a substantial investment and has a significant effect on the reliability of the system. Through past experience with both equipment and network operations, most decisions in selection and siting of this equipment are made intuitively, following certain general guidelines or rules of thumb. This heuristic nature of the problem lends itself to solution using an expert system approach. A prototype has been developed and is currently under evaluation in the industry. Results so far have demonstrated both the feasibility and benefits of the expert system as a design aid.
Resumo:
A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.
Resumo:
Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.