923 resultados para Continuous dynamic recrystallization
Resumo:
The importance of interaction between Operations Management (OM) and Human Behavior has been recently re-addressed. This paper introduced the Reasoned Action Theory suggested by Froehle and Roth (2004) to analyze Operational Capabilities exploring the suitability of this model in the context of OM. It also seeks to discuss the behavioral aspects of operational capabilities from the perspective of organizational routines. This theory was operationalized using Fishbein and Ajzen (F/A) behavioral model and a multi-case strategy was employed to analyze the Continuous Improvement (CI) capability. The results posit that the model explains partially the CI behavior in an operational context and some contingency variables might influence the general relations among the variables involved in the F/A model. Thus intention might not be the determinant variable of behavior in this context.
Resumo:
In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix) one can state that either the infection peters out naturally) (lambda <= 1) or if lambda > 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.
Resumo:
Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
In recent works large area hydrogenated amorphous silicon p-i-n structures with low conductivity doped layers were proposed as single element image sensors. The working principle of this type of sensor is based on the modulation, by the local illumination conditions, of the photocurrent generated by a light beam scanning the active area of the device. In order to evaluate the sensor capabilities is necessary to perform a response time characterization. This work focuses on the transient response of such sensor and on the influence of the carbon contents of the doped layers. In order to evaluate the response time a set of devices with different percentage of carbon incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.
Resumo:
IRMA International Conference under the theme Managing Worldwide Operations and Communications with Information Technology, May 19-23, Vancouver, British Columbia, Canada
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
This chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems.