989 resultados para Conformational changes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The CC chemokines regulated on activation normal T expressed and secreted (RANTES) and monocyte chemotactic protein 3 (MCP-3), and the anaphylatoxin C5a, induce activation, degranulation, chemotaxis, and transendothelial migration of eosinophils. Adhesion assays on purified ligands showed differential regulation of beta 1 and beta 2 integrin avidity in eosinophils. Adhesiveness of VLA-4 (alpha 4 beta 1, CD29/CD49d) for vascular cell adhesion molecule 1 or fibronectin was rapidly increased but subsequently reduced by RANTES, MCP-3, or C5a. The deactivation of VLA-4 lead to cell detachment, whereas phorbol 12-myristate 13-acetate induced sustained activation of VLA-4. In contrast, chemoattractants stimulated a prolonged increase in the adhesiveness of Mac-1 (alpha M beta 2, CD11b/CD18) for intercellular adhesion molecule 1. Inhibition by pertussis toxin confirmed signaling via G protein-coupled receptors. Chemoattractants induced transient, while phorbol 12-myristate 13-acetate induced sustained actin polymerization. Disruption of actin filaments by cytochalasins inhibited increases in avidity of VLA-4 but not of Mac-1. Chemoattractants did not upregulate a Mn2+-inducible beta 1 neoepitope defined by the mAb 9EG7, but induced prolonged expression of a Mac-1 activation epitope recognized by the mAb CBRM1/5. This mAb inhibited chemoattractant-stimulated adhesion of eosinophils to intercellular adhesion molecule 1. Thus, regulation of VLA-4 was dependent on the actin cytoskeleton, whereas conformational changes appeared to be crucial for activation of Mac-1. To our knowledge, this is the first demonstration that physiological agonists, such as chemoattractants, can differentially regulate the avidity of a beta 1 and a beta 2 integrin expressed on the same leukocyte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend the sensitivity of fluorescence resonance energy transfer (FRET) to the single molecule level by measuring energy transfer between a single donor fluorophore and a single acceptor fluorophore. Near-field scanning optical microscopy (NSOM) is used to obtain simultaneous dual color images and emission spectra from donor and acceptor fluorophores linked by a short DNA molecule. Photodestruction dynamics of the donor or acceptor are used to determine the presence and efficiency of energy transfer. The classical equations used to measure energy transfer on ensembles of fluorophores are modified for single-molecule measurements. In contrast to ensemble measurements, dynamic events on a molecular scale are observable in single pair FRET measurements because they are not canceled out by random averaging. Monitoring conformational changes, such as rotations and distance changes on a nanometer scale, within single biological macromolecules, may be possible with single pair FRET.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are now several crystal structures of antibody Fab fragments complexed to their protein antigens. These include Fab complexes with lysozyme, two Fab complexes with influenza virus neuraminidase, and three Fab complexes with their anti-idiotype Fabs. The pattern of binding that emerges is similar to that found with other protein-protein interactions, with good shape complementarity between the interacting surfaces and reasonable juxtapositions of polar residues so as to permit hydrogen-bond formation. Water molecules have been observed in cavities within the interface and on the periphery, where they often form bridging hydrogen bonds between antibody and antigen. For the most part the antigen is bound in the middle of the antibody combining site with most of the six complementarity-determining residues involved in binding. For the most studied antigen, lysozyme, the epitopes for four antibodies occupy approximately 45% of the accessible surface area. Some conformational changes have been observed to accompany binding in both the antibody and the antigen, although most of the information on conformational change in the latter comes from studies of complexes with small antigens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach that enables identification of specific synthetic peptide inhibitors of plant viral infection is reported. Synthetic analogs of melittin that have sequence and structural similarities to an essential domain of tobacco mosaic virus coat protein were found to possess highly specific antiviral activity. This approach involves modification of residues located at positions analogous to those that are critical for virus assembly. The degree of inhibition found correlates well with sequence similarities between the viral capsid protein and the melittin analogs studied as well as with the induced conformational changes that result upon interaction of the peptides and ribonucleic acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The x-ray structure of the complex of a catalytic antibody Fab fragment with a phosphonate transition-state analog has been determined. The antibody (CNJ206) catalyzes the hydrolysis of p-nitrophenyl esters with significant rate enhancement and substrate specificity. Comparison of this structure with that of the uncomplexed Fab fragment suggests hapten-induced conformational changes: the shape of the combining site changes from a shallow groove in the uncomplexed Fab to a deep pocket where the hapten is buried. Three hydrogen-bond donors appear to stabilize the charged phosphonate group of the hapten: two NH groups of the heavy (H) chain complementarity-determining region 3 (H3 CDR) polypeptide chain and the side-chain of histidine-H35 in the H chain (His-H35) in the H1 CDR. The combining site shows striking structural similarities to that of antibody 17E8, which also has esterase activity. Both catalytic antibody ("abzyme") structures suggest that oxyanion stabilization plays a significant role in their rate acceleration. Additional catalytic groups that improve efficiency are not necessarily induced by the eliciting hapten; these groups may occur because of the variability in the combining sites of different monoclonal antibodies that bind to the same hapten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Band 3 HT (Pro-868-->Leu) is a mutant anion exchange protein which has several phenotypic characteristics, including a 2- to 3-fold larger Vmax, and reduced covalent binding of the anion transport inhibitor 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate (H2DIDS). We have used fluorescence kinetic methods to study inhibitor binding to band 3 to determine if the point mutation in band 3 HT produces localized or wide-spread conformational changes within the membrane-bound domain of this transporter. Our results show that covalent binding of H2DIDS by band 3 HT is slower by a factor of 10 to 20 compared with the wild-type protein. In contrast, no such difference in the kinetics was observed for covalent binding of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In addition, the kinetics of H2DIDS release from band 3 HT was abnormal, while the kinetics of 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) release showed no difference when compared with the wild-type protein. We conclude that substitution of leucine for proline at position 868 does not perturb the structure of "lysine A" in the membrane-bound domain of band 3 but rather produces an apparently localized conformational change in the C-terminal subdomain of the protein which alters H2DIDS affinity. When combined with the observation of an increased Vmax, these results suggest that protein structural changes at position 868 influence a turnover step in the transport cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteriorhodopsin is a membrane protein that functions as a light-driven proton pump. Each cycle of proton transport is initiated by the light-induced isomerization of retinal from the all-trans to 13-cis configuration and is completed by the protein-driven reisomerization of retinal to the all-trans configuration. Previous studies have shown that replacement of Leu-93, a residue in close proximity to the 13-methyl group of retinal, by alanine, resulted in a 250-fold increase in the time required to complete each photocycle. Here, we show that the kinetic defect in the photocycle of the Leu-93-->Ala mutant occurs at a stage after the completion of proton transport and can be overcome in the presence of strong background illumination. Time-resolved retinal-extraction experiments demonstrate the continued presence of a 13-cis intermediate in the photocycle of the Leu-93-->Ala mutant well after the completion of proton release and uptake. These results indicate that retinal reisomerization is kinetically the rate-limiting step in the photocycle of this mutant and that the slow thermal reisomerization can be bypassed by the absorption of a second photon. The effects observed for the Leu-93-->Ala mutant are not observed upon replacement of any other residue in van der Waals contact with retinal or upon replacement of Leu-93 by valine. We conclude that the contact between Leu-93 and the 13-methyl group of retinal plays a key role in controlling the rate of protein conformational changes associated with retinal reisomerization and return of the protein to the initial state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA conformational changes are essential for the assembly of multiprotein complexes that contact several DNA sequence elements. An approach based on atomic force microscopy was chosen to visualize specific protein-DNA interactions occurring on eukaryotic class II nuclear gene promoters. Here we report that binding of the transcription regulatory protein Jun to linearized plasmid DNA containing the consensus AP-1 binding site upstream of a class II gene promoter leads to bending of the DNA template. This binding of Jun was found to be essential for the formation of preinitiation complexes (PICs). The cooperative binding of Jun and PIC led to looping of DNA at the protein binding sites. These loops were not seen in the absence of either PICs, Jun, or the AP-1 binding site, suggesting a direct interaction between DNA-bound Jun homodimers and proteins bound to the core promoter. This direct visualization of functional transcriptional complexes confirms the theoretical predictions for the mode of gene regulation by trans-activating proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complexed with its intracellular receptor, FKBP12, the natural product rapamycin inhibits G1 progression of the cell cycle in a variety of mammalian cell lines and in the yeast Saccharomyces cerevisae. Previously, a mammalian protein that directly associates with FKBP12-rapamycin has been identified and its encoding gene has been cloned from both human (designated FRAP) [Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S. & Schreiber, S.L. (1994) Nature (London) 369, 756-758] and rat (designated RAFT) [Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. (1994) Cell 78, 35-43]. The full-length FRAP is a 289-kDa protein containing a putative phosphatidylinositol kinase domain. Using an in vitro transcription/translation assay method coupled with proteolysis studies, we have identified an 11-kDa FKBP12-rapamycin-binding domain within FRAP. This minimal binding domain lies N-terminal to the kinase domain and spans residues 2025-2114. In addition, we have carried out mutagenesis studies to investigate the role of Ser2035, a potential phosphorylation site for protein kinase C within this domain. We now show that the FRAP Ser2035-->Ala mutant displays similar binding affinity when compared with the wild-type protein, whereas all other mutations at this site, including mimics of phosphoserine, abolish binding, presumably due to either unfavorable steric interactions or induced conformational changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le VIH infecte les cellules par fusion de sa membrane avec la membrane de la cellule cible. Cette fusion est effectuée par les glycoprotéines de l'enveloppe (Env) qui sont synthétisées en tant que précurseur, gp160, qui est ensuite clivé en gp120 et gp41. La protéine gp41 est la partie transmembranaire du complexe de l'enveloppe et l’ancre à la particule virale alors que la gp120 assure la liaison au récepteur cellulaire CD4 et corécepteur CCR5 ou CXCR4. Ces interactions successives induisent des changements de conformation d’Env qui alimentent le processus d'entrée du virus conduisant finalement à l'insertion du peptide de fusion de la gp41 dans la membrane de la cellule cible. La sous-unité extérieure gp120 contient cinq régions variables (V1 à V5), dont trois (V1, V2 et V3) étant capables d’empêcher l’adoption spontanée de la conformation liée à CD4. Cependant, le rôle de régions variables V4 et V5 vis-à-vis de ces changements de conformation reste inconnu. Pour étudier leur effet, des mutants de l'isolat primaire de clade B YU2, comprenant une délétion de la V5 ou une mutation au niveau de tous les sites potentiels de N-glycosylation de la V4 (PNGS), ont été générés. L'effet des mutations sur la conformation des glycoprotéines d'enveloppe a été analysé par immunoprécipitation et résonance de plasmon de surface avec des anticorps dont la liaison dépend de la conformation adopté par la gp120. Ni le retrait des PNGS de la V4 ni la délétion de V5 n’a affecté les changements conformationnels d’Env tels que mesurés par ces techniques, ce qui suggère que les régions variables V1, V2 et V3 sont les principaux acteurs dans la prévention de l’adoption de la conformation lié de CD4 d’Env.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine and canine neosporosis.