805 resultados para Concurrent computing
Resumo:
Exascale systems are the next frontier in high-performance computing and are expected to deliver a performance of the order of 10^18 operations per second using massive multicore processors. Very large- and extreme-scale parallel systems pose critical algorithmic challenges, especially related to concurrency, locality and the need to avoid global communication patterns. This work investigates a novel protocol for dynamic group communication that can be used to remove the global communication requirement and to reduce the communication cost in parallel formulations of iterative data mining algorithms. The protocol is used to provide a communication-efficient parallel formulation of the k-means algorithm for cluster analysis. The approach is based on a collective communication operation for dynamic groups of processes and exploits non-uniform data distributions. Non-uniform data distributions can be either found in real-world distributed applications or induced by means of multidimensional binary search trees. The analysis of the proposed dynamic group communication protocol has shown that it does not introduce significant communication overhead. The parallel clustering algorithm has also been extended to accommodate an approximation error, which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.
Resumo:
In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.
Resumo:
n this study, the authors discuss the effective usage of technology to solve the problem of deciding on journey start times for recurrent traffic conditions. The developed algorithm guides the vehicles to travel on more reliable routes that are not easily prone to congestion or travel delays, ensures that the start time is as late as possible to avoid the traveller waiting too long at their destination and attempts to minimise the travel time. Experiments show that in order to be more certain of reaching their destination on time, a traveller has to leave early and correspondingly arrive early, resulting in a large waiting time. The application developed here asks the user to set this certainty factor as per the task in hand, and computes the best start time and route.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
We present an overview of the MELODIES project, which is developing new data-intensive environmental services based on data from Earth Observation satellites, government databases, national and European agencies and more. We focus here on the capabilities and benefits of the project’s “technical platform”, which applies cloud computing and Linked Data technologies to enable the development of these services, providing flexibility and scalability.
Resumo:
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Resumo:
The extensive use of cloud computing in educational institutes around the world brings unique challenges for universities. Some of these challenges are due to clear differences between Europe and Middle East universities. These differences stem from the natural variation between people. Cloud computing has created a new concept to deal with software services and hardware infrastructure. Some benefits are immediately gained, for instance, to allow students to share their information easily and to discover new experiences of the education system. However, this introduces more challenges, such as security and configuration of resources in shared environments. Educational institutes cannot escape from these challenges. Yet some differences occur between universities which use cloud computing as an educational tool or a form of social connection. This paper discusses some benefits and limitations of using cloud computing and major differences in using cloud computing at universities in Europe and the Middle East, based on the social perspective, security and economics concepts, and personal responsibility.
Resumo:
Compared to skilled adult readers, children typically make more fixations that are longer in duration, shorter saccades, and more regressions, thus reading more slowly (Blythe & Joseph, 2011). Recent attempts to understand the reasons for these differences have discovered some similarities (e.g., children and adults target their saccades similarly; Joseph, Liversedge, Blythe, White, & Rayner, 2009) and some differences (e.g., children’s fixation durations are more affected by lexical variables; Blythe, Liversedge, Joseph, White, & Rayner, 2009) that have yet to be explained. In this article, the E-Z Reader model of eye-movement control in reading (Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998) is used to simulate various eye-movement phenomena in adults versus children in order to evaluate hypotheses about the concurrent development of reading skill and eye-movement behavior. These simulations suggest that the primary difference between children and adults is their rate of lexical processing, and that different rates of (post-lexical) language processing may also contribute to some phenomena (e.g., children’s slower detection of semantic anomalies; Joseph et al., 2008). The theoretical implications of this hypothesis are discussed, including possible alternative accounts of these developmental changes, how reading skill and eye movements change across the entire lifespan (e.g., college-aged vs. elderly readers), and individual differences in reading ability.
Resumo:
We extend the method of Cassels for computing the Cassels-Tate pairing on the 2-Selmer group of an elliptic curve, to the case of 3-Selmer groups. This requires significant modifications to both the local and global parts of the calculation. Our method is practical in sufficiently small examples, and can be used to improve the upper bound for the rank of an elliptic curve obtained by 3-descent.
Resumo:
Cloud computing innebär användning av datorresurser som är tillgängliga via ett nätverk, oftast Internet och är ett område som har vuxit fram i snabb takt under de senaste åren. Allt fler företag migrerar hela eller delar av sin verksamhet till molnet. Sogeti i Borlänge har behov av att migrera sina utvecklingsmiljöer till en molntjänst då drift och underhåll av dessa är kostsamma och tidsödande. Som Microsoftpartners vill Sogeti använda Microsoft tjänst för cloud computing, Windows Azure, för detta syfte. Migration till molnet är ett nytt område för Sogeti och de har inga beskrivningar för hur en sådan process går till. Vårt uppdrag var att utveckla ett tillvägagångssätt för migration av en IT-lösning till molnet. En del av uppdraget blev då att kartlägga cloud computing, dess beståndsdelar samt vilka för- och nackdelar som finns, vilket har gjort att vi har fått grundläggande kunskap i ämnet. För att utveckla ett tillvägagångssätt för migration har vi utfört flera migrationer av virtuella maskiner till Windows Azure och utifrån dessa migrationer, litteraturstudier och intervjuer dragit slutsatser som mynnat ut i ett generellt tillvägagångssätt för migration till molnet. Resultatet har visat att det är svårt att göra en generell men samtidigt detaljerad beskrivning över ett tillvägagångssätt för migration, då scenariot ser olika ut beroende på vad som ska migreras och vilken typ av molntjänst som används. Vi har dock utifrån våra erfarenheter från våra migrationer, tillsammans med litteraturstudier, dokumentstudier och intervjuer lyft vår kunskap till en generell nivå. Från denna kunskap har vi sammanställt ett generellt tillvägagångssätt med större fokus på de förberedande aktiviteter som en organisation bör genomföra innan migration. Våra studier har även resulterat i en fördjupad beskrivning av cloud computing. I vår studie har vi inte sett att någon tidigare har beskrivit kritiska framgångsfaktorer i samband med cloud computing. I vårt empiriska arbete har vi dock identifierat tre kritiska framgångsfaktorer för cloud computing och i och med detta täckt upp en del av kunskapsgapet där emellan.
Resumo:
Learning from anywhere anytime is a contemporary phenomenon in the field of education that is thought to be flexible, time and cost saving. The phenomenon is evident in the way computer technology mediates knowledge processes among learners. Computer technology is however, in some instances, faulted. There are studies that highlight drawbacks of computer technology use in learning. In this study we aimed at conducting a SWOT analysis on ubiquitous computing and computer-mediated social interaction and their affect on education. Students and teachers were interviewed on the mentioned concepts using focus group interviews. Our contribution in this study is, identifying what teachers and students perceive to be the strength, weaknesses, opportunities and threats of ubiquitous computing and computer-mediated social interaction in education. We also relate the findings with literature and present a common understanding on the SWOT of these concepts. Results show positive perceptions. Respondents revealed that ubiquitous computing and computer-mediated social interaction are important in their education due to advantages such as flexibility, efficiency in terms of cost and time, ability to acquire computer skills. Nevertheless disadvantages where also mentioned for example health effects, privacy and security issues, noise in the learning environment, to mention but a few. This paper gives suggestions on how to overcome threats mentioned.
Resumo:
The ever increasing spurt in digital crimes such as image manipulation, image tampering, signature forgery, image forgery, illegal transaction, etc. have hard pressed the demand to combat these forms of criminal activities. In this direction, biometrics - the computer-based validation of a persons' identity is becoming more and more essential particularly for high security systems. The essence of biometrics is the measurement of person’s physiological or behavioral characteristics, it enables authentication of a person’s identity. Biometric-based authentication is also becoming increasingly important in computer-based applications because the amount of sensitive data stored in such systems is growing. The new demands of biometric systems are robustness, high recognition rates, capability to handle imprecision, uncertainties of non-statistical kind and magnanimous flexibility. It is exactly here that, the role of soft computing techniques comes to play. The main aim of this write-up is to present a pragmatic view on applications of soft computing techniques in biometrics and to analyze its impact. It is found that soft computing has already made inroads in terms of individual methods or in combination. Applications of varieties of neural networks top the list followed by fuzzy logic and evolutionary algorithms. In a nutshell, the soft computing paradigms are used for biometric tasks such as feature extraction, dimensionality reduction, pattern identification, pattern mapping and the like.