996 resultados para Computational Evaluation
Resumo:
Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content.
Resumo:
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in Sao Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The performance assessment as to water consumption in WC cisterns has contributed to the development of flushing system technologies, which allow smaller flushing volumes. The purpose of this work is to assess the performance of the the low water consumption requirement of WC cisterns with dual flushing system (6/3L), when compared to 6L flushing volume WC cisterns in multifamily buildings. The research methodology consisted of a case study in a multifamily residential building with submetering system, by monitoring the total water consumption and the two flushing systems using water meters installed in WC cisterns. By means of a mathematical model, a comparison of the design flowrate in the main branch was carried out considering the two types of WC cisterns. The results indicated that the water consumption in the 6L WC cistern was 20% in relation to the total domestic consumption, whereas the water consumption observed in the dual-flush WC cistern (6/3L) was 16%. The dual flushing system (6/3L) presented about 18% consumption reduction impact as compared to the 6 L system. The design flowrate values in the main branch, obtained by the mathematical model, were 0.35 L/s for systems with 6 L WC cistern and 0.34 L/s with dual-flush WC cistern (6/3 L), that is, a reduction of similar to 3%. Practical application: The knowledge of the performance in field of dual-flush WC cistern contributes to industry to improve this system and to users to aid their choice of technologies aimed at water conservation, and so assisting to the development of sustainable buildings.
Resumo:
We preserit a computational procedure to control art experimental chaotic system by applying the occasional proportional feedback (OPF) method. The method implementation uses the fuzzy theory to relate the variable correction to the necessary adjustment in the control parameter. As an application We control the chaotic attractors of the Chua circuit. We present file developed circuits and algorithms to implement this control in real time. To simplify the used procedure, we use it low resolution analog to digital converter compensated for a lowpass filter that facilitates similar applications to control other systems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.
Resumo:
This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.
Resumo:
The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.
Resumo:
This work presents the results of an experimental study on pure refrigerant R-134a and refrigerant-oil mixtures flowing through capillary tubes in order to analyse the oil influence in component performance. Tests were carried out for capillary tubes internal diameters of 0.69 mm and 0.82 mm, condensing temperatures ranging from 40 degrees C to 50 degrees C, and subcooling degrees between 3 degrees C and 12 degrees C. Pure refrigerant flow measurements were compared to those for refrigerant-oil mixtures with oil concentrations of 1.0% and 3.0%. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The arteriovenous fistula (AVF) is characterized by enhanced blood flow and is the most widely used vascular access for chronic haemodialysis (Sivanesan et al., 1998). A large proportion of the AVF late failures are related to local haemodynamics (Sivanesan et al., 1999a). As in AVF, blood flow dynamics plays an important role in growth, rupture, and surgical treatment of aneurysm. Several techniques have been used to study the flow patterns in simplified models of vascular anastomose and aneurysm. In the present investigation, Computational Fluid Dynamics (CFD) is used to analyze the flow patterns in AVF and aneurysm through the velocity waveform obtained from experimental surgeries in dogs (Galego et al., 2000), as well as intra-operative blood flow recordings of patients with radiocephalic AVF ( Sivanesan et al., 1999b) and physiological pulses (Aires, 1991), respectively. The flow patterns in AVF for dog and patient surgeries data are qualitatively similar. Perturbation, recirculation and separation zones appeared during cardiac cycle, and these were intensified in the diastole phase for the AVF and aneurysm models. The values of wall shear stress presented in this investigation of AVF and aneurysm models oscillated in the range that can both cause damage to endothelial cells and develop atherosclerosis.
Resumo:
The therapeutic ultrasound (US) is one of the resources mostly used by physiotherapists; however the use of uncalibrated equipments results in inefficient or even harmful therapies to the patient. In this direction, the objective of this study was to evaluate the performance and the procedures of utilization and maintenance of US in use in clinics and Physical-therapy offices. A questionnaire with questions related to the procedures applied in service during the use of therapeutic ultrasound was applied to physiotherapists. The performance of 31 equipments of 6 different brands and 13 different models was evaluated according to the IEC 61689 norm. The parameters measured were: acoustic power; effective radiating area (AER); non-uniformity ratio of the beam (RBN); maximum effective intensity; acoustic frequency of operation, modulation factor and wave form on pulsate mode. As for the questionnaires, it was evident that the professionals are not concerned about the calibration of the equipment. The results demonstrated that only 32.3% of the equipments were in accordance with the norms for the variables power and effective radiation area. The frequency analysis indicated that 20% of the 3 MHz transducers and 12.5% of the 1 MHz contemplated the norms. In the pulsate mode, 12.7% presented relation rest/duration inside allowed limits. A great variation of the ultrasonic field was observed on the obtained images, which presented beams not centered, sometimes with bifurcation of its apex. The results allow concluding that, although used in therapeutic sessions with the population, none of the equipments presents all the analyzed variables inside technical norms. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.
Resumo:
Flow pumps have been developed for classical applications in Engineering, and are important instruments in areas such as Biology and Medicine. Among applications for this kind of device we notice blood pump and chemical reagents dosage in Bioengineering. Furthermore, they have recently emerged as a viable thermal management solution for cooling applications in small-scale electronic devices. This work presents the performance study of a novel principle of a piezoelectric flow pump which is based oil the use of a bimorph piezoelectric actuator inserted in fluid (water). Piezoelectric actuators have some advantages over classical devices, such as lower noise generation and ease of miniaturization. The main objective is the characterization of this piezoelectric pump principle through computational simulations (using finite element software), and experimental tests through a manufactured prototype. Computational data, Such as flow rate and pressure curves, have also been compared with experimental results for validation purposes. (C) 2009 Elsevier B.V. All rights reserved.