941 resultados para Compressible elastic circular cylindrical tube
Resumo:
During the past decade several new techniques for the treatment of children's fractures respecting the specificity of the growing bone have been described. The goal of all these techniques was to mechanically stabilise the fracture however to preserve a certain instability of the fracture gap itself inducing early callus formation and subsequent consolidation. The dynamic external fixation as well as the elastic stable intramedullary pinning have become accepted means in the treatment of long bone fractures in the paediatric age group. We report our experience of the last seven years with the intramedullary pinning of 105 fractures. Eighty-four were fractures of the femur, 9 of the humerus, 8 of the forearm, and a further 4 of the tibial shaft. The intramedullary elastic pinning represents a simple technique which supports or even enhances the natural process of fracture healing of the growing bone. The method is not very invasive, is cost effective, and allows short hospitalisation. Early physical activity is guaranteed due to early consolidation of the fracture. Complications are rare and the final orthopedic and cosmetic outcome is excellent.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes the predominant attenuation mechanism at seismic frequencies. As a consequence, centimeter-scale perturbations of the subsurface physical properties should be taken into account for seismic modeling whenever detailed and accurate responses of the target structures are desired. This is, however, computationally prohibitive since extremely small grid spacings would be necessary. A convenient way to circumvent this problem is to use an upscaling procedure to replace the heterogeneous porous media by equivalent visco-elastic solids. In this work, we solve Biot's equations of motion to perform numerical simulations of seismic wave propagation through porous media containing mesoscopic heterogeneities. We then use an upscaling procedure to replace the heterogeneous poro-elastic regions by homogeneous equivalent visco-elastic solids and repeat the simulations using visco-elastic equations of motion. We find that, despite the equivalent attenuation behavior of the heterogeneous poro-elastic medium and the equivalent visco-elastic solid, the seismograms may differ due to diverging boundary conditions at fluid-solid interfaces, where there exist additional options for the poro-elastic case. In particular, we observe that the seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an interesting result, which has potentially important implications for wave-equation-based algorithms in exploration geophysics involving fluid-solid interfaces, such as, for example, wave field decomposition.
Resumo:
Age-related cognitive impairments were studied in rats kept in semi-enriched conditions during their whole life, and tested during ontogeny and adult life in various classical spatial tasks. In addition, the effect of intrahippocampal grafts of fetal septal-diagonal band tissue, rich in cholinergic neurons, was studied in some of these subjects. The rats received bilateral cell suspensions when aged 23-24 months. Starting 4 weeks after grafting, they were trained during 5 weeks in an 8-arm maze made of connected plexiglass tunnels. No age-related impairment was detected during the first eight trials, when the maze shape was that of a classical radial maze in which the rats had already been trained when young. The older rats were impaired when the task was made more difficult by rendering two arms parallel to each other. They developed an important neglect of one of the parallel tunnels resulting in a high amount of errors before completion of the task. In addition, the old rats developed a systematic response pattern of visits to adjacent arms in a sequence, which was not observed in the younger subjects. None of these behaviours were observed in the old rats with a septal transplant. Sixteen weeks after grafting, another experiment was conducted in a homing hole board task. Rats were allowed to escape from a large circular arena through one hole out of many, and to reach home via a flexible tube under the table. The escape hole was at a fixed position according to distant room cues, and olfactory cues were made irrelevant by rotating the table between the trials. An additional cue was placed on the escape position. No age-related difference in escape was observed during training. During a probe trial with no hole connected and no proximal cue present, the old untreated rats were less clearly focussed on the training sector than were either the younger or the grafted old subjects. Taken together, these experiments indicate that enriched housing conditions and spatial training during adult life do not protect against all age-related deterioration in spatial ability. However, it might be that the considerable improvement observed in the grafted subjects results from an interaction between the graft treatment and the housing conditions.
Resumo:
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA.
Resumo:
Lectio praecursoria
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.