874 resultados para Component Based Development
Resumo:
Knowledge based urban development (KBUD) is a new paradigm in urban planning tailoring to the era of knowledge economy. It aims mainly to assist a contemporary city to promote a more sustainable socio-spatial order. The paper reports on the investigation of KBUD initiative in Malaysia which is manifested through the establishment of a project called Multimedia Super Corridor (MSC). MSC Malaysia aims to attract knowledge workers and industries to invest and operate within the area by creating a world class urban corridor with state-of-the-art multimedia infrastructure, efficient transportation system and an attractive living environment. Based on documents analysis and interviews, this paper analyses the strategies, implementations, and achievements of KBUD initiative in Cyberjaya, being the leading intelligent city of the unique Malaysia’s KBUD project-MSC Malaysia. A critical evaluation is made to assess the achievements of MSC, by looking at the physical changes after about ten years since its official launching. The findings recommend some valuable lessons for other cities that strive to develop KBUD strategies, strengthen their sustainable socio-spatial policies, and seek a global recognition.
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
In an ever changing world the adults of the future will be faced with many challenges. To cope with these challenges it seems apparent that values education will need to become paramount within a child.s education. A considerable number of research studies have indicated that values education is a critical component within education (Lovat & Toomey, 2007b). Building on this research Lovat (2006) claimed that values education was the missing link in quality teaching The concept of quality teaching had risen to the fore within educational research literature in the late 20th century with the claim that it is the teacher who makes the difference in schooling (Hattie, 2004). Thus, if teachers make such a difference to student learning, achievement and well-being, then it must hold true that pre-service teacher education programmes are vital in ensuring the development of quality teachers for our schools. The gap that this current research programme addressed was to link the fields of values education, quality teaching and pre-service teacher education. This research programme aimed to determine the impact of a values-based pedagogy on the development of quality teaching dimensions within pre-service teacher education. The values-based pedagogy that was investigated in this research programme was Philosophy in the Classroom. The research programme adopted a nested case study design based on the constructivist-interpretative paradigm in examining a unit within a pre-service teacher education programme at a Queensland university. The methodology utilised was qualitative where the main source of data was via interviews. In total, 43 pre-service teachers participated in three studies in order to determine if their involvement in a unit where the focus was on introducing pre-service teachers to an explicit values-based pedagogy impacted on their knowledge, skills and confidence in terms of quality teaching dimensions. The research programme was divided into three separate studies in order to address the two research questions: 1. In what ways do pre-service teachers perceive they are being prepared to become quality teachers? 2. Is there a connection between an explicit values-based pedagogy in pre-service teacher education and the development of pre-service teachers. understanding of quality teaching? Study One provided insight into 21 pre-service teachers. understandings of quality teaching. These 21 participants had not engaged in an explicit values-based pedagogy. Study Two involved the interviewing of 22 pre-service teachers at two separate points in time . prior to exposure to a unit that employed a values-explicit pedagogy and post this subject.s lecture content delivery. Study Three reported on and analysed individual case studies of five pre-service teachers who had participated in Study Two Time 1 and Time 2, as well as a third time following their field experience where they had practice in teaching the values explicit pedagogy. The results of the research demonstrate that an explicit values-based pedagogy introduced into a teacher education programme has a positive impact on the development of pre-service teachers. understanding of quality teaching skills and knowledge. The teaching and practice of a values-based pedagogy positively impacted on pre-service teachers with increases of knowledge, skills and confidence demonstrated on the quality teaching dimensions of intellectual quality, a supportive classroom environment, recognition of difference, connectedness and values. These findings were reinforced through the comparison of pre-service teachers who had participated in the explicit values-based pedagogical approach, with a sample of pre-service teachers who had not engaged in this same values-based pedagogical approach. A solid values-based pedagogy and practice can and does enhance pre-service teachers. understanding of quality teaching. These findings surrounding the use of a values-based pedagogy in pre-service teacher education to enhance quality teaching knowledge and skills has contributed theoretically to the field of educational research, as well having practical implications for teacher education institutions and teacher educators.
Resumo:
Background Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. Methodology and Principal Findings We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT), cardiac depression and Quality of Life (QOL) were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565–726), than on the pre-test, 524 m (95% CI: 420–655), and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. Conclusions and Significance The system provided a feasible and very flexible alternative form of supervised cardiac rehabilitation for those unable to access hospital-based programs, with the potential to address a well-recognised deficiency in health care provision in many countries. Future research should assess its longer-term efficacy, cost-effectiveness and safety in larger samples representing the spectrum of cardiac morbidity and severity.
Resumo:
Young drivers are overrepresented in motor vehicle crash rates, and their risk increases when carrying similar aged passengers. Graduated Driver Licensing strategies have demonstrated effectiveness in reducing fatalities among young drivers, however complementary approaches may further reduce crash rates. Previous studies conducted by the researchers have shown that there is considerable potential for a passenger focus in youth road safety interventions, particularly involving the encouragement of young passengers to intervene in their peers’ risky driving (Buckley, Chapman, Sheehan & Davidson, 2012). Additionally, this research has shown that technology-based applications may be a promising means of delivering passenger safety messages, particularly as young people are increasingly accessing web-based and mobile technologies. This research describes the participatory design process undertaken to develop a web-based road safety program, and involves feasibility testing of storyboards for a youth passenger safety application. Storyboards and framework web-based materials were initially developed for a passenger safety program, using the results of previous studies involving online and school-based surveys with young people. Focus groups were then conducted with 8 school staff and 30 senior school students at one public high school in the Australian Capital Territory. Young people were asked about the situations in which passengers may feel unsafe and potential strategies for intervening in their peers’ risky driving. Students were also shown the storyboards and framework web-based material and were asked to comment on design and content issues. Teachers were also shown the material and asked about their perceptions of program design and feasibility. The focus group data will be used as part of the participatory design process, in further developing the passenger safety program. This research describes an evidence-based approach to the development of a web-based application for youth passenger safety. The findings of this research and resulting technology will have important implications for the road safety education of senior high school students.
Resumo:
The school environment plays an important role in shaping adolescent outcomes, and research increasingly demonstrates the need to target the school social context in health promotion programs. This paper describes the research process undertaken to design a school connectedness component of an injury prevention program for early adolescents, Skills for Preventing Injury in Youth (SPIY). The connectedness component takes the form of a professional development workshop for teachers on increasing students’ connectedness to school, and this paper describes the research process used to construct program material. It also describes the methods used to encourage teachers’ implementation of connectedness strategies following program delivery. A multi-stage process of data collection included, (i) surveys with 540 Grade 9 students to examine links between school connectedness and risk-related injury, (ii) a systematic literature review of previously-evaluated school connectedness programs to determine key strategies that encourage implementation fidelity and program effectiveness, and (iii) interviews with 14 high school teachers to understand current use of connectedness strategies and ideas for program design. Findings from each stage are discussed in terms of how results informed the program design. The survey data provided information from which to frame program content, and the results of the systematic review demonstrated effective program strategies. The teacher interview data also provided program content incorporating target participants’ views and aligning with their priorities, which is important to ensure effective implementation of program strategies. A comprehensive design process provides an understanding of methods for, and may encourage, teachers’ future implementation of program strategies.
Resumo:
A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.
Resumo:
Modern applications comprise multiple components, such as browser plug-ins, often of unknown provenance and quality. Statistics show that failure of such components accounts for a high percentage of software faults. Enabling isolation of such fine-grained components is therefore necessary to increase the robustness and resilience of security-critical and safety-critical computer systems. In this paper, we evaluate whether such fine-grained components can be sandboxed through the use of the hardware virtualization support available in modern Intel and AMD processors. We compare the performance and functionality of such an approach to two previous software based approaches. The results demonstrate that hardware isolation minimizes the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution's correctness. We also show that our relatively simple implementation has equivalent run-time performance, with overheads of less than 34%, does not require custom tool chains and provides enhanced functionality over software-only approaches, confirming that hardware virtualization technology is a viable mechanism for fine-grained component isolation.
Resumo:
In the era of a global knowledge economy, urban regions that seek to increase their competitive edge, become destinations for talent and investment and provide prosperity and high quality of life to their inhabitants have little chance of achieving these goals without forming effective knowledge-based urban development strategies. The research reported in this paper aims to address the questions of how a knowledge-based urban development performance measurement can be undertaken and the value contribution of such measurement. The paper focuses on the city of Helsinki. This empirical study analytically investigates Helsinki’s performance from the lens of knowledge-based urban development by comparing this urban region with eight international competitors, Boston, San Francisco, Birmingham, Manchester, Melbourne, Sydney, Toronto, and Vancouver. The results of the study not only reveal a clearer understanding of Helsinki’s benchmarked performance and competitive edge considering the regional policy context along with strategic directions in strengthening its international standing and competitiveness but also provide useful insights for other urban regions that aspire to such development.
Resumo:
Background To describe the iterative development process and final version of ‘MobileMums’: a physical activity intervention for women with young children (<5 years) delivered primarily via mobile telephone (mHealth) short messaging service (SMS). Methods MobileMums development followed the five steps outlined in the mHealth development and evaluation framework: 1) conceptualization (critique of literature and theory); 2) formative research (focus groups, n= 48); 3) pre-testing (qualitative pilot of intervention components, n= 12); 4) pilot testing (pilot RCT, n= 88); and, 5) qualitative evaluation of the refined intervention (n= 6). Results Key findings identified throughout the development process that shaped the MobileMums program were the need for: behaviour change techniques to be grounded in Social Cognitive Theory; tailored SMS content; two-way SMS interaction; rapport between SMS sender and recipient; an automated software platform to generate and send SMS; and, flexibility in location of a face-to-face delivered component. Conclusions The final version of MobileMums is flexible and adaptive to individual participant’s physical activity goals, expectations and environment. MobileMums is being evaluated in a community-based randomised controlled efficacy trial (ACTRN12611000481976).
Resumo:
An advanced rule-based Transit Signal Priority (TSP) control method is presented in this paper. An on-line transit travel time prediction model is the key component of the proposed method, which enables the selection of the most appropriate TSP plans for the prevailing traffic and transit condition. The new method also adopts a priority plan re-development feature that enables modifying or even switching the already implemented priority plan to accommodate changes in the traffic conditions. The proposed method utilizes conventional green extension and red truncation strategies and also two new strategies including green truncation and queue clearance. The new method is evaluated against a typical active TSP strategy and also the base case scenario assuming no TSP control in microsimulation. The evaluation results indicate that the proposed method can produce significant benefits in reducing the bus delay time and improving the service regularity with negligible adverse impacts on the non-transit street traffic.