961 resultados para Complex Programmable Logic Device (CPLD)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La obtención de energía a partir de la fusión nuclear por confinamiento magnético del plasma, es uno de los principales objetivos dentro de la comunidad científica dedicada a la energía nuclear. Desde la construcción del primer dispositivo de fusión, hasta la actualidad, se han llevado a cabo multitud de experimentos, que hoy en día, gran parte de ellos dan soporte al proyecto International Thermonuclear Experimental Reactor (ITER). El principal problema al que se enfrenta ITER, se basa en la monitorización y el control del plasma. Gracias a las nuevas tecnologías, los sistemas de instrumentación y control permiten acercarse más a la solución del problema, pero a su vez, es más complicado estandarizar los sistemas de adquisición de datos que se usan, no solo en ITER, sino en otros proyectos de igual complejidad. Desarrollar nuevas implementaciones hardware y software bajo los requisitos de los diagnósticos definidos por los científicos, supone una gran inversión de tiempo, retrasando la ejecución de nuevos experimentos. Por ello, la solución que plantea esta tesis, consiste en la definición de una metodología de diseño que permite implementar sistemas de adquisición de datos inteligentes y su fácil integración en entornos de fusión para la implementación de diagnósticos. Esta metodología requiere del uso de los dispositivos Reconfigurable Input/Output (RIO) y Flexible RIO (FlexRIO), que son sistemas embebidos basados en tecnología Field-Programmable Gate Array (FPGA). Para completar la metodología de diseño, estos dispositivos van a ser soportados por un software basado en EPICS Device Support utilizando la tecnología EPICS software asynDriver. Esta metodología se ha evaluado implementando prototipos para los controladores rápidos de planta de ITER, tanto para casos prácticos de ámbito general como adquisición de datos e imágenes, como para casos concretos como el diagnóstico del fission chamber, implementando pre-procesado en tiempo real. Además de casos prácticos, esta metodología se ha utilizado para implementar casos reales, como el Ion Source Hydrogen Positive (ISHP), desarrollada por el European Spallation Source (ESS Bilbao) y la Universidad del País Vasco. Finalmente, atendiendo a las necesidades que los experimentos en los entornos de fusión requieren, se ha diseñado un mecanismo mediante el cual los sistemas de adquisición de datos, que pueden ser implementados mediante la metodología de diseño propuesta, pueden integrar un reloj hardware capaz de sincronizarse con el protocolo IEEE1588-V2, permitiendo a estos, obtener los TimeStamps de las muestras adquiridas con una exactitud y precisión de decenas de nanosegundos y realizar streaming de datos con TimeStamps. ABSTRACT Fusion energy reaching by means of nuclear fusion plasma confinement is one of the main goals inside nuclear energy scientific community. Since the first fusion device was built, many experiments have been carried out and now, most of them give support to the International Thermonuclear Experimental Reactor (ITER) project. The main difficulty that ITER has to overcome is the plasma monitoring and control. Due to new technologies, the instrumentation and control systems allow an approaching to the solution, but in turn, the standardization of the used data acquisition systems, not only in ITER but also in other similar projects, is more complex. To develop new hardware and software implementations under scientific diagnostics requirements, entail time costs, delaying new experiments execution. Thus, this thesis presents a solution that consists in a design methodology definition, that permits the implementation of intelligent data acquisition systems and their easy integration into fusion environments for diagnostic purposes. This methodology requires the use of Reconfigurable Input/Output (RIO) and Flexible RIO (FlexRIO) devices, based on Field-Programmable Gate Array (FPGA) embedded technology. In order to complete the design methodology, these devices are going to be supported by an EPICS Device Support software, using asynDriver technology. This methodology has been evaluated implementing ITER PXIe fast controllers prototypes, as well as data and image acquisition, so as for concrete solutions like the fission chamber diagnostic use case, using real time preprocessing. Besides of these prototypes solutions, this methodology has been applied for the implementation of real experiments like the Ion Source Hydrogen Positive (ISHP), developed by the European Spallation Source and the Basque country University. Finally, a hardware mechanism has been designed to integrate a hardware clock into RIO/FlexRIO devices, to get synchronization with the IEEE1588-V2 precision time protocol. This implementation permits to data acquisition systems implemented under the defined methodology, to timestamp all data acquired with nanoseconds accuracy, permitting high throughput timestamped data streaming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las Field-Programmable Gate Arrays (FPGAs) SRAM se construyen sobre una memoria de configuración de tecnología RAM Estática (SRAM). Presentan múltiples características que las hacen muy interesantes para diseñar sistemas empotrados complejos. En primer lugar presentan un coste no-recurrente de ingeniería (NRE) bajo, ya que los elementos lógicos y de enrutado están pre-implementados (el diseño de usuario define su conexionado). También, a diferencia de otras tecnologías de FPGA, pueden ser reconfiguradas (incluso en campo) un número ilimitado de veces. Es más, las FPGAs SRAM de Xilinx soportan Reconfiguración Parcial Dinámica (DPR), la cual permite reconfigurar la FPGA sin interrumpir la aplicación. Finalmente, presentan una alta densidad de lógica, una alta capacidad de procesamiento y un rico juego de macro-bloques. Sin embargo, un inconveniente de esta tecnología es su susceptibilidad a la radiación ionizante, la cual aumenta con el grado de integración (geometrías más pequeñas, menores tensiones y mayores frecuencias). Esta es una precupación de primer nivel para aplicaciones en entornos altamente radiativos y con requisitos de alta confiabilidad. Este fenómeno conlleva una degradación a largo plazo y también puede inducir fallos instantáneos, los cuales pueden ser reversibles o producir daños irreversibles. En las FPGAs SRAM, los fallos inducidos por radiación pueden aparecer en en dos capas de arquitectura diferentes, que están físicamente superpuestas en el dado de silicio. La Capa de Aplicación (o A-Layer) contiene el hardware definido por el usuario, y la Capa de Configuración contiene la memoria de configuración y la circuitería de soporte. Los fallos en cualquiera de estas capas pueden hacer fracasar el sistema, lo cual puede ser ás o menos tolerable dependiendo de los requisitos de confiabilidad del sistema. En el caso general, estos fallos deben gestionados de alguna manera. Esta tesis trata sobre la gestión de fallos en FPGAs SRAM a nivel de sistema, en el contexto de sistemas empotrados autónomos y confiables operando en un entorno radiativo. La tesis se centra principalmente en aplicaciones espaciales, pero los mismos principios pueden aplicarse a aplicaciones terrenas. Las principales diferencias entre ambas son el nivel de radiación y la posibilidad de mantenimiento. Las diferentes técnicas para la gestión de fallos en A-Layer y C-Layer son clasificados, y sus implicaciones en la confiabilidad del sistema son analizados. Se proponen varias arquitecturas tanto para Gestores de Fallos de una capa como de doble-capa. Para estos últimos se propone una arquitectura novedosa, flexible y versátil. Gestiona las dos capas concurrentemente de manera coordinada, y permite equilibrar el nivel de redundancia y la confiabilidad. Con el objeto de validar técnicas de gestión de fallos dinámicas, se desarrollan dos diferentes soluciones. La primera es un entorno de simulación para Gestores de Fallos de C-Layer, basado en SystemC como lenguaje de modelado y como simulador basado en eventos. Este entorno y su metodología asociada permite explorar el espacio de diseño del Gestor de Fallos, desacoplando su diseño del desarrollo de la FPGA objetivo. El entorno incluye modelos tanto para la C-Layer de la FPGA como para el Gestor de Fallos, los cuales pueden interactuar a diferentes niveles de abstracción (a nivel de configuration frames y a nivel físico JTAG o SelectMAP). El entorno es configurable, escalable y versátil, e incluye capacidades de inyección de fallos. Los resultados de simulación para algunos escenarios son presentados y comentados. La segunda es una plataforma de validación para Gestores de Fallos de FPGAs Xilinx Virtex. La plataforma hardware aloja tres Módulos de FPGA Xilinx Virtex-4 FX12 y dos Módulos de Unidad de Microcontrolador (MCUs) de 32-bits de propósito general. Los Módulos MCU permiten prototipar Gestores de Fallos de C-Layer y A-Layer basados en software. Cada Módulo FPGA implementa un enlace de A-Layer Ethernet (a través de un switch Ethernet) con uno de los Módulos MCU, y un enlace de C-Layer JTAG con el otro. Además, ambos Módulos MCU intercambian comandos y datos a través de un enlace interno tipo UART. Al igual que para el entorno de simulación, se incluyen capacidades de inyección de fallos. Los resultados de pruebas para algunos escenarios son también presentados y comentados. En resumen, esta tesis cubre el proceso completo desde la descripción de los fallos FPGAs SRAM inducidos por radiación, pasando por la identificación y clasificación de técnicas de gestión de fallos, y por la propuesta de arquitecturas de Gestores de Fallos, para finalmente validarlas por simulación y pruebas. El trabajo futuro está relacionado sobre todo con la implementación de Gestores de Fallos de Sistema endurecidos para radiación. ABSTRACT SRAM-based Field-Programmable Gate Arrays (FPGAs) are built on Static RAM (SRAM) technology configuration memory. They present a number of features that make them very convenient for building complex embedded systems. First of all, they benefit from low Non-Recurrent Engineering (NRE) costs, as the logic and routing elements are pre-implemented (user design defines their connection). Also, as opposed to other FPGA technologies, they can be reconfigured (even in the field) an unlimited number of times. Moreover, Xilinx SRAM-based FPGAs feature Dynamic Partial Reconfiguration (DPR), which allows to partially reconfigure the FPGA without disrupting de application. Finally, they feature a high logic density, high processing capability and a rich set of hard macros. However, one limitation of this technology is its susceptibility to ionizing radiation, which increases with technology scaling (smaller geometries, lower voltages and higher frequencies). This is a first order concern for applications in harsh radiation environments and requiring high dependability. Ionizing radiation leads to long term degradation as well as instantaneous faults, which can in turn be reversible or produce irreversible damage. In SRAM-based FPGAs, radiation-induced faults can appear at two architectural layers, which are physically overlaid on the silicon die. The Application Layer (or A-Layer) contains the user-defined hardware, and the Configuration Layer (or C-Layer) contains the (volatile) configuration memory and its support circuitry. Faults at either layers can imply a system failure, which may be more ore less tolerated depending on the dependability requirements. In the general case, such faults must be managed in some way. This thesis is about managing SRAM-based FPGA faults at system level, in the context of autonomous and dependable embedded systems operating in a radiative environment. The focus is mainly on space applications, but the same principles can be applied to ground applications. The main differences between them are the radiation level and the possibility for maintenance. The different techniques for A-Layer and C-Layer fault management are classified and their implications in system dependability are assessed. Several architectures are proposed, both for single-layer and dual-layer Fault Managers. For the latter, a novel, flexible and versatile architecture is proposed. It manages both layers concurrently in a coordinated way, and allows balancing redundancy level and dependability. For the purpose of validating dynamic fault management techniques, two different solutions are developed. The first one is a simulation framework for C-Layer Fault Managers, based on SystemC as modeling language and event-driven simulator. This framework and its associated methodology allows exploring the Fault Manager design space, decoupling its design from the target FPGA development. The framework includes models for both the FPGA C-Layer and for the Fault Manager, which can interact at different abstraction levels (at configuration frame level and at JTAG or SelectMAP physical level). The framework is configurable, scalable and versatile, and includes fault injection capabilities. Simulation results for some scenarios are presented and discussed. The second one is a validation platform for Xilinx Virtex FPGA Fault Managers. The platform hosts three Xilinx Virtex-4 FX12 FPGA Modules and two general-purpose 32-bit Microcontroller Unit (MCU) Modules. The MCU Modules allow prototyping software-based CLayer and A-Layer Fault Managers. Each FPGA Module implements one A-Layer Ethernet link (through an Ethernet switch) with one of the MCU Modules, and one C-Layer JTAG link with the other. In addition, both MCU Modules exchange commands and data over an internal UART link. Similarly to the simulation framework, fault injection capabilities are implemented. Test results for some scenarios are also presented and discussed. In summary, this thesis covers the whole process from describing the problem of radiationinduced faults in SRAM-based FPGAs, then identifying and classifying fault management techniques, then proposing Fault Manager architectures and finally validating them by simulation and test. The proposed future work is mainly related to the implementation of radiation-hardened System Fault Managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiotic components in the relations of complex systems depend on the Subject. There are two main semiotic components: Neutrosophic and Modal. Modal components are alethical and deontical. In this paper the authors applied the theory of Neutrosophy and Modal Logic to Deontical Impure Systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mythical and religious belief systems in a social context can be regarded as a conglomeration of sacrosanct rites, which revolve around substantive values that involve an element of faith. Moreover, we can conclude that ideologies, myths and beliefs can all be analyzed in terms of systems within a cultural context. The significance of being able to define ideologies, myths and beliefs as systems is that they can figure in cultural explanations. This, in turn, means that such systems can figure in logic-mathematical analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an extension of the logic outer-approximation algorithm for dealing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is modeled in terms of differential-algebraic equations. Although the proposed algorithm can be applied to a wide variety of discrete-continuous optimal control problems, we are mainly interested in problems where disjunctions are also present. Disjunctions are included to take into account only certain parts of the underlying model which become relevant under some processing conditions. By doing so the numerical robustness of the optimization algorithm improves since those parts of the model that are not active are discarded leading to a reduced size problem and avoiding potential model singularities. We test the proposed algorithm using three examples of different complex dynamic behavior. In all the case studies the number of iterations and the computational effort required to obtain the optimal solutions is modest and the solutions are relatively easy to find.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reviewed the outcome following use of recombinant activated factor VII (rVIIa) in patients with major bleeding post cardiothoracic surgery in our unit between January 2002 and July 2004. The unit consists of 16 cardiothoracic intensive care beds in a public metropolitan teaching hospital which serves as a referral centre for heart and lung transplant surgery Patients with refactory bleeding following cardiothoracic surgical procedures who were treated with rVIIa were identified. A total of 12 episodes of rVIIa use were recorded in ten patients, including three episodes with ventricular assist devices, and 5 heart and/or lung transplants. The median dose used was 85 mu g/kg. Chest tube drainage decreased in all patients following administration of rVIIa; median chest tube drainage decreased front 445 ml/h to 171 ml/h (P=0.03). Despite cessation of bleeding, mortality was high, when rVIIa was used after more than 24 hours. In six episodes, despite early rVIIa use (within six hours), continued bleeding necessitated return to theatre, where a surgical source of bleeding was found. In this small retrospective study, rVIIa significantly reduced bleeding that was refractory to standard blood product transfusion. In this series of patients., those that did not respond to rVIla early in the postoperative phase were found to have a surgical source of bleeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controlled from distance teaching (DT) in the system of technical education has a row of features: complication of informative content, necessity of development of simulation models and trainers for conducting of practical and laboratory employments, conducting of knowledge diagnostics on the basis of mathematical-based algorithms, organization of execution collective projects of the applied setting. For development of the process of teaching bases of fundamental discipline control system Theory of automatic control (TAC) the combined approach of optimum combination of existent programmatic instruments of support was chosen DT and own developments. The system DT TAC included: controlled from distance course (DC) of TAC, site of virtual laboratory practical works in LAB.TAC and students knowledge remote diagnostic system d-tester.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings. © 2010 Elsevier Ltd. All rights reserved.