901 resultados para Combined loading of axial compression and torsion
Resumo:
The importance of performance expectancies for the prediction of regulation of behavior and actual performance has long been established. Building on theories from the field of social cognition, we suggest that the level of performance expectancies, as well as the certainty of the expectancy, have a joint influence on an individual’s beliefs and behavior. In two studies (one cross sectional using a sample of secondary school students and one longitudinal using a sample of university students) we found that expectancies more strongly predicted persistence, and subsequent performance, the more certain the expectancy was. This pattern was found even if prior performance was controlled, as in Study 2. The data give an indication that it may be useful to include certainty as an additional variable in expectancy models.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
OBJECTIVES To systematically review the available literature on the influence of dental implant placement and loading protocols on peri-implant innervation. MATERIAL AND METHODS The database MEDLINE, Cochrane, EMBASE, Web of Science, LILACS, OpenGrey and hand searching were used to identify the studies published up to July 2013, with a populations, exposures and outcomes (PEO) search strategy using MeSH keywords, focusing on the question: Is there, and if so, what is the effect of time between tooth extraction and implant placement or implant loading on neural fibre content in the peri-implant hard and soft tissues? RESULTS Of 683 titles retrieved based on the standardized search strategy, only 10 articles fulfilled the inclusion criteria, five evaluating the innervation of peri-implant epithelium, five elucidating the sensory function in peri-implant bone. Three included studies were considered having a methodology of medium quality and the rest were at low quality. All those papers reported a sensory innervation around osseointegrated implants, either in the bone-implant interface or peri-implant epithelium, which expressed a particular innervation pattern. Compared to unloaded implants or extraction sites without implantation, a significant higher density of nerve fibres around loaded dental implants was confirmed. CONCLUSIONS To date, the published literature describes peri-implant innervation with a distinct pattern in hard and soft tissues. Implant loading seems to increase the density of nerve fibres in peri-implant tissues, with insufficient evidence to distinguish between the innervation patterns following immediate and delayed implant placement and loading protocols. Variability in study design and loading protocols across the literature and a high risk of bias in the studies included may contribute to this inconsistency, revealing the need for more uniformity in reporting, randomized controlled trials, longer observation periods and standardization of protocols.
Resumo:
Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14.
Resumo:
The 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, can achieve significant reductions in plasma low-density lipoprotein (LDL)-cholesterol levels. Experimental and clinical evidence now shows that some statins interfere with formation of atherosclerotic lesions independent of their hypolipidemic properties. Vulnerable plaque rupture can result in thrombus formation and artery occlusion; this plaque deterioration is responsible for most acute coronary syndromes, including myocardial infarction (MI), unstable angina, and coronary death, as well as coronary heart diseaseequivalent non-hemorrhagic stroke. Inhibition of HMG-CoA reductase has potential pleiotropic effects other than lipid-lowering, as statins block mevalonic acid production, a precursor to cholesterol and numerous other metabolites. Statins' beneficial effects on clinical events may also thus involve nonlipid-related mechanisms that modify endothelial function, inflammatory responses, plaque stability, and thrombus formation. Aspirin, routinely prescribed to post-MI patients as adjunct therapy, may potentiate statins beneficial effects, as aspirin does not compete metabolically with statins but acts similarly on atherosclerotic lesions. Common functions of both medications include inhibition of platelet activity and aggregation, reduction in atherosclerotic plaque macrophage cell count, and prevention of atherosclerotic vessel endothelial dysfunction. The Cholesterol and Recurrent Events (CARE) trial provides an ideal population in which to examine the combined effects of pravastatin and aspirin. Lipid levels, intermediate outcomes, are examined by pravastatin and aspirin status, and differences between the two pravastatin groups are found. A modified Cox proportional-hazards model with aspirin as a time-dependent covariate was used to determine the effect of aspirin and pravastatin on the clinical cardiovascular composite endpoint of coronary heart disease death, recurrent MI or stroke. Among those assigned to pravastatin, use of aspirin reduced the composite primary endpoint by 35%; this result was similar by gender, race, and diabetic status. Older patients demonstrated a nonsignificant 21% reduction in the primary outcome, whereas the younger had a significant reduction of 43% in the composite primary outcome. Secondary outcomes examined include coronary artery bypass graft (38% reduction), nonsurgical bypass, peripheral vascular disease, and unstable angina. Pravastatin and aspirin in a post-MI population was found to be a beneficial combination that seems to work through lipid and nonlipid, anti-inflammatory mechanisms. ^
Resumo:
Despite the different scientific objectives of Legs 185 and 191, the sedimentary sections recovered from Sites 1149 and 1179 are the two most complete sections recovered from the northwestern Pacific Basin by either the Deep Sea Drilling Project (DSDP) (i.e., Legs 6, 20, 32, and 86) or ODP (i.e., Legs 185 and 191). During Leg 185, a complete sedimentary section (410 m) and an additional 133 m of highly altered volcanic basement were recovered. The Miocene to Pleistocene section (i.e., upper ~150 m) recovered from Site 1149 includes lithostratigraphic Unit I (0-118.2 meters below sea floor [mbsf]) and Subunit IIA (118.2-149.5 mbsf) of Plank, Ludden, Escutia, et al. (2000, doi:10.2973/odp.proc.ir.185.2000) and consists of ash- and biogenic silica- bearing clay, radiolarian-bearing clay, silt-bearing clay, ash-bearing siliceous ooze, and diatomaceous clay, with numerous discrete volcanic ash layers (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000). During Leg 191, a near-continuous 375-m-thick sedimentary section was recovered in addition to 100 m of basaltic basement. The upper 221.5 m of the sedimentary section at Site 1179 (i.e., within lithostratigraphic Unit I of Kanazawa, Sager, Escutia et al. [2001, doi:10.2973/odp.proc.ir.191.2001]) consists of upper Miocene to Pleistocene clay- and radiolarian-bearing diatom ooze containing numerous discrete ash layers. The presence of discrete ash layers within the Miocene to Pleistocene sedimentary section at both Site 1149 and 1179 provides a unique opportunity to conduct 40Ar/39Ar ash chronology to refine the excellent magnetostratigraphic records (based on the scale of Berggren et al., 1995) obtained shipboard from both sites (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000; Kanazawa, Sager, Escutia, et al., 2001, doi:10.2973/odp.proc.ir.191.2001).In this data report we present the analytical results from the 40Ar/39Ar incrementally heated analyses and provide a new combined late Miocene to Pleistocene 40Ar/39Ar and magnetostratigraphic chronology for the northwestern Pacific.
Resumo:
To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400?µatm) and N sources (N2 and NO3-). Subsequently, biomass production and the main energy-generating processes (photosynthesis and respiration) and energy-consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2-dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3-grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3- users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.
Resumo:
We examined the combined effects of light and pCO2 on growth, CO2-fixation and N2-fixation rates by strains of the unicellular marine N2-fixing cyanobacterium Crocosphaera watsonii with small (WH0401) and large (WH0402) cells that were isolated from the western tropical Atlantic Ocean. In low-pCO2-acclimated cultures (190 ppm) of WH0401, growth, CO2-fixation and N2-fixation rates were significantly lower than those in cultures acclimated to higher (present-day 385 ppm, or future 750 ppm) pCO2 treatments. Growth rates were not significantly different, however, in low-pCO2-acclimated cultures of WH0402 in comparison with higher pCO2 treatments. Unlike previous reports for C. watsonii (strain WH8501), N2-fixation rates did not increase further in cultures of WH0401 or WH0402 when acclimated to 750 ppm relative to those maintained at present-day pCO2. Both light and pCO2 had a significant negative effect on gross : net N2-fixation rates in WH0402 and trends were similar in WH0401, implying that retention of fixed N was enhanced under elevated light and pCO2. These data, along with previously reported results, suggest that C. watsonii may have wide-ranging, strain-specific responses to changing light and pCO2, emphasizing the need for examining the effects of global change on a range of isolates within this biogeochemically important genus. In general, however, our data suggest that cellular N retention and CO2-fixation rates of C. watsonii may be positively affected by elevated light and pCO2 within the next 100 years, potentially increasing trophic transfer efficiency of C and N and thereby facilitating uptake of atmospheric carbon by the marine biota.