747 resultados para Combinatorial mathematics
Resumo:
Three-wave mixing in quasi-periodic structures (QPSs) composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG). The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Resumo:
Linguistic influences in mathematics have previously been explored throughsubtyping methodology and by taking advantage of the componential nature ofmathematics and variations in language requirements that exist across tasks. Thepresent longitudinal investigation aimed to examine the language requirements of mathematical tasks in young children aged 5-7 years. Initially, 256 children were screened for mathematics and reading difficulties using standardised measures. Those scoring at or below the 35th percentile on either dimension were classified as having difficulty. From this screening, 115 children were allocated to each of the MD (n=26), MDRD (n=32), reading difficulty (RD, n=22) and typically achieving (TA, n=35) subtypes. These children were tested at four time points, separated by six monthly intervals, on a battery of seven mathematical tasks. Growth curve analysis indicated that, in contrast to previous research on older children, young children with MD and MDRD had very similar patterns of development on all mathematical tasks. Overall, the subtype comparisons suggested that language played only a minor mediating role in most tasks, and this was secondary in importance to non-verbal skills. Correlational evidence suggested that children from the different subtypescould have been using different mixes of verbal and non-verbal strategies to solve the mathematical problems.
Resumo:
The A-level Mathematics qualification is based on a compulsory set of pure maths modules and a selection of applied maths modules with the pure maths representing two thirds of the assessment. The applied maths section includes mechanics, statistics and (sometimes) decision maths. A combination of mechanics and statistics tends to be the most popular choice by far. The current study aims to understand how maths teachers in secondary education make decisions regarding the curriculum options and offers useful insight to those currently designing the new A-level specifications.
Semi-structured interviews were conducted with A-level maths teachers representing 27 grammar schools across Northern Ireland. Teachers were generally in agreement regarding the importance of pure maths and the balance between pure and applied within the A-level maths curriculum. A wide variety of opinions existed concerning the applied options. While many believe that the basic mechanics-statistics (M1-S1) combination is most accessible, it was also noted that the M1-M2 combination fits neatly alongside A-level physics. Lack of resources, timetabling constraints and competition with other subjects in the curriculum hinder uptake of A-level Further Maths.
Teachers are very conscious of the need to obtain high grades to benefit both their pupils and the school’s reputation. The move to a linear assessment system in England while Northern Ireland retains the modular system is likely to cause some schools to review their choice of exam board although there is disagreement as to whether a modular or linear system is more advantageous for pupils. The upcoming change in the specification offers an opportunity to refresh the assessment also and reduce the number of leading questions. However, teachers note that there are serious issues with GCSE maths and these have implications for A-level.
Resumo:
The nonlinear scattering and combinatorial frequency generation by the quasi-periodic Fibonacci and Thue-Morse stacks of semiconductor layers have been investigated taking into account the nonlinear charge dynamics. It has been shown that the mixing processes in passive semiconductor structures are driven by the competitive effects of the collision of charges and resonance interactions of carriers with pump waves. The effects of the stack arrangements and constituent layer parameters on the efficiency of the combinatorial frequency generation are discussed.
Resumo:
The provision of mathematics learning support in higher-level institutions on the island of Ireland has developed rapidly in recent times with the number of institutions providing some form of support doubling in the past seven years. The Irish Mathematics Learning Support Network aims to inform all mathematics support practitioners in Ireland on relevant issues. Consequently it was decided that a detailed picture of current provision was necessary. A comprehensive online survey was conducted to amass the necessary data. The ultimate aim of the survey is to benefit all mathematics support practitioners in Ireland, in particular those in third-level institutions who require further support to enhance the mathematical learning experience of their students. The survey reveals that the majority of Irish higher-level institutions provide mathematics learning support to some extent, with 65% doing so through a support centre. Learners of service mathematics are the primary users: first-year science, engineering and business undergraduates, with non-traditional students being a sizeable element. Despite the growing recognition for the need to offer mathematics learning support almost half of the centres are subject to annual review. Further, less than half the support offerings have a dedicated full-time manager, while 60% operate with a staff of five or fewer. The elevation of mathematics support as a viable and worthwhile career in order to attract and retain high quality staff is seen by many respondents as the crucial next phase of development.
Resumo:
This study examines the potential of next-generation sequencing based ‘genotyping-by-sequencing’ (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.
Resumo:
We show that a self-generated set of combinatorial games, S, may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question “Is there a set which will give an on-distributive but modular lattice?” appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented.
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Tésis de Doctorado en Filosofía, Universidad de Indiana, Bloomington, 2000
Resumo:
The move into higher education is a real challenge for students from all educational backgrounds, with the adaptation to a new curriculum and style of learning and teaching posing a daunting task. A series of exercises were planned to boost the impact of the mathematics support for level four students and was focussed around a core module for all students. The intention was to develop greater confidence in tackling mathematical problems in all levels of ability and to provide more structured transition period in the first semester of level 4. Over a two-year period the teaching team for Biochemistry and Molecular Biology provided a series of structured formative tutorials and “interactive” online problems. Video solutions to all formative problems were made available, in order that students were able to engage with the problems at any time and were not disadvantaged if they could not attend. The formative problems were specifically set to dovetail into a practical report in which the mathematical skills developed were specifically assessed. Students overwhelmingly agreed that the structured formative activities had broadened their understanding of the subject and that more such activities would help. Furthermore, it is interesting to note that the package of changes undertaken resulted in a significant increase in the overall module mark over the two years of development.
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The fast development of distance learning tools such as Open Educational Resources (OER) and Massive Open Online Courses (MOOC or MOOCs) are indicators of a shift in the way in which digital teaching and learning are understood. MOOC are a new style of online classes that allow any person with web access, anywhere, usually free of charge, to participate through video lectures, computer graded tests and discussion forums. They have been capturing the attention of many higher education institutions around the world. This paper will give us an overview of the “Introduction to Differential Calculus” a MOOC Project, created by an engaged volunteer team of Mathematics lecturers from four schools of the Polytechnic Institute of Oporto (IPP). The MOOC theories and their popularity are presented and complemented by a discussion of some MOOC definitions and their inherent advantages and disadvantages. It will also explore what MOOC mean for Mathematics education. The Project development is revealed by focusing on used MOOC structure, as well as the quite a lot of types of course materials produced. It ends with a presentation of a short discussion about problems and challenges met throughout the development of the project. It is also our goal to contribute for a change in the way teaching and learning Mathematics is seen and practiced nowadays, trying to make education more accessible to as many people as possible and increase our institution (IPP) recognition.