956 resultados para Cold shock protein
Resumo:
Moraxella catarrhalis is an exclusively human commensal and mucosal pathogen. Its role as a disease-causing organism has long been questioned. Today, it is recognized as one of the major causes of acute otitis media in children, and its relative frequency of isolation from both the nasopharynx and the middle ear cavity has increased since the introduction of the heptavalent pneumococcal conjugate vaccine, which is associated with a shift in the composition of the nasopharyngeal flora in infants and young children. Although otitis media caused by M. catarrhalis is generally believed to be mild in comparison with pneumococcal disease, numerous putative virulence factors have now been identified and it has been shown that several surface components of M. catarrhalis induce mucosal inflammation. In adults with chronic obstructive pulmonary disease (COPD), M. catarrhalis is now a well-established trigger of approximately 10% of acute inflammatory exacerbations.Although the so-called cold shock response is a well-described bacterial stress response in species such as Escherichia coli, Bacillus subtilis or - more recently - Staphylococcus aureus, M. catarrhalis is the only typical nasopharyngeal pathogen in which this response has been investigated. Indeed, a 3-h 26°C cold shock, which may occur physiologically, when humans inspire cold air for prolonged periods of time, increases epithelial cell adherence and enhances proinflammatory host responses and may thus contribute to the symptoms referred to as common cold, which typically are attributed to viral infections.
Resumo:
Seeking biomarkers reflecting disease development in cystic echinococcosis (CE), we used a proteomic approach linked to immunological characterisation for the identification of respective antigens. Two-dimensional gel electrophoresis (2-DE) of sheep hydatid fluid, followed by immunoblot analysis (IB) with sera from patients with distinct phases of disease, enabled us to identify by mass spectrometry heat shock protein 20 (HSP20) as a potential marker of active CE. Using IB, antibodies specific to the 34 kDa band of HSP20 were detected in sera from 61/95 (64%) patients with CE, but not in sera from healthy subjects. IB revealed anti-HSP20 antibodies in a higher percentage of sera from patients with active disease than in sera from patients with inactive disease (81 vs. 24%; P = 10(-4)). These primary results were confirmed in a long-term follow-up study after pharmacological and surgical treatment. Herewith anti-HSP20 antibody levels significantly decreased over the course of treatment in sera from patients with cured disease, relative to sera from patients with progressive disease (P = 0.017). Thus, during CE, a comprehensive strategy of proteomic identification combined with immunological validation represents a promising approach for the identification of biomarkers useful for the prognostic assessment of treatment of CE patients.
Resumo:
Abstract Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.
Resumo:
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.
Resumo:
Stress proteins represent a group of highly conserved intracellular proteins that provide adaptation against cellular stress. The present study aims to elucidate the stress protein-mediated effects of local hyperthermia and systemic administration of monophosphoryl lipid A (MPL) on oxygenation, metabolism and survival in bilateral porcine random pattern buttock flaps. Preconditioning was achieved 24h prior to surgery by applying a heating blanket on the operative site (n = 5), by intravenous administration of MPL at a dosage of 35 microg/kg body weight (n = 5) or by combining the two (n = 5). The flaps were monitored with laser Doppler flowmetry, polarographic microprobes and microdialysis until 5h postoperatively. Semiquantitative immunohistochemistry was performed for heat shock protein 70 (HSP70), heat shock protein 32 (also termed haem oxygenase-1, HO-1), and inducible nitrc oxide synthase (iNOS). The administration of MPL increased the impaired microcirculatory blood flow in the proximal part of the flap and partial oxygen tension in the the distal part by approximately 100% each (both P<0.05), whereas both variables remained virtually unaffected by local heat preconditioning. Lactate/pyruvate (L/P) ratio and glycerol concentration (representing cell membrane disintegration) in the distal part of the flap gradually increased to values of approximately 500 mmol/l and approximately 350 micromol/l, respectively (both P<0.01), which was substantially attenuated by heat application (P<0.01 for L/P ratio and P<0.05 for glycerol) and combined preconditioning (P<0.01 for both variables), whereas the effect of MPL was less marked (not significant). Flap survival was increased from 56% (untreated animals) to 65% after MPL (not significant), 71% after heat application (P<0.05) and 78% after both methods of preconditioning (P<0.01). iNOS and HO-1 were upregulated after each method of preconditioning (P<0.05), whereas augmented HSP70 staining was only observed after heat application (P<0.05). We conclude that local hyperthermia is more effective in preventing flap necrosis than systemic MPL administration because of enhancing the cellular tolerance to hypoxic stress, which is possibly mediated by HSP70, whereas some benefit may be obtained with MPL due to iNOS and HO-1-mediated improvement in tissue oxygenation.
Resumo:
The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.
Resumo:
By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.
Resumo:
In this study, we demonstrate the power of applying complementary DNA (cDNA) microarray technology to identifying candidate loci that exhibit subtle differences in expression levels associated with a complex trait in natural populations of a nonmodel organism. Using a highly replicated experimental design involving 180 cDNA microarray experiments, we measured gene-expression levels from 1098 transcript probes in 90 individuals originating from six brown trout (Salmo trutta) and one Atlantic salmon (Salmo salar) population, which follow either a migratory or a sedentary life history. We identified several candidate genes associated with preparatory adaptations to different life histories in salmonids, including genes encoding for transaldolase 1, constitutive heat-shock protein HSC70-1 and endozepine. Some of these genes clustered into functional groups, providing insight into the physiological pathways potentially involved in the expression of life-history related phenotypic differences. Such differences included the down-regulation of genes involved in the respiratory system of future migratory individuals. In addition, we used linear discriminant analysis to identify a set of 12 genes that correctly classified immature individuals as migratory or sedentary with high accuracy. Using the expression levels of these 12 genes, 17 out of 18 individuals used for cross-validation were correctly assigned to their respective life-history phenotype. Finally, we found various candidate genes associated with physiological changes that are likely to be involved in preadaptations to seawater in anadromous populations of the genus Salmo, one of which was identified to encode for nucleophosmin 1. Our findings thus provide new molecular insights into salmonid life-history variation, opening new perspectives in the study of this complex trait.
Resumo:
Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.
Resumo:
N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis of horses caused by bites of insects such as Culicoides or Simulium spp. The aim of the present study was to compare the IgE-binding pattern of sera of IBH-affected horses to Culicoides nubeculosus and Simulium vittatum salivary gland extracts (SGE). Individual IgE responses to proteins of S. vittatum and C. nubeculosus SGEs were evaluated in 15 IBH-affected and three healthy horses on immunoblots. Fourteen out of the 15 IBH-affected but none of the healthy horses showed individual IgE binding patterns to seven and six main protein bands in C. nubeculosus and S. vittatum SGE, respectively. These 14 sera showed IgE-binding to proteins from SGE of both C. nubeculosus and S. vittatum, but they reacted with fewer protein bands derived from S. vittatum than from C. nubeculosus SGE. Sera showing IgE-binding to a 32 kDa band from C. nubeculosus always bound to a 32 kDa band from S. vittatum. Similarly, all sera binding to a 70 kDa band from C. nubeculosus reacted with a corresponding band in S. vittatum SGE. The 70 kDa bands from S. vittatum and C. nubeculosus were identified by mass spectrometry as heat shock protein-70-cognate-3.
Resumo:
We have previously shown that benzamidine-type compounds can inhibit the activity of arginine-specific cysteine proteinases (gingipains HRgpA and RgpB); well-known virulence factors of Porphyromonas gingivalis. They also hinder in vitro growth of this important periodontopathogenic bacterium. Apparently growth arrest is not associated with their ability to inhibit these proteases, because pentamidine, which is a 20-fold less efficient inhibitor of gingipain than 2,6-bis-(4-amidinobenzyl)-cyclohexanone (ACH), blocked P. gingivalis growth far more effectively. To identify targets for benzamidine-derived compounds other than Arg-gingipains, and to explain their bacteriostatic effects, P. gingivalis ATCC 33277 and P. gingivalis M5-1-2 (clinical isolate) cell extracts were subjected to affinity chromatography using a benzamidine-Sepharose column to identify proteins interacting with benzamidine. In addition to HRgpA and RgpB the analysis revealed heat-shock protein GroEL as another ligand for benzamidine. To better understand the effect of benzamidine-derived compounds on P. gingivalis, bacteria were exposed to benzamidine, pentamidine, ACH and heat, and the expression of gingipains and GroEL was determined. Exposure to heat and benzamidine-derived compounds caused significant increases in GroEL, at both the mRNA and protein levels. Interestingly, despite the fact that gingipains were shown to be the main virulence factors in a fertilized egg model of infection, mortality rates were strongly reduced, not only by ACH, but also by pentamidine, a relatively weak gingipain inhibitor. This effect may depend not only on gingipain inhibition but also on interaction of benzamidine derivatives with GroEL. Therefore these compounds may find use in supportive periodontitis treatment.
Resumo:
BACKGROUND Her2 expression and amplification occurs in a significant subset of gastro-esophageal carcinomas. Her2 is a client protein of molecular chaperones, e.g. heat shock protein (HSP) 90, rendering targeted therapies against Her2/HSP90 an interesting approach. This study aimed to investigate the role and relationship of Her2 and HSP90 in gastric and gastro-esophageal adenocarcinomas. MATERIAL AND METHODS Immunohistochemical determination of HSP90 and Her2 expression was performed on 347 primary resected tumors. Her2 amplification was additionally determined by fluorescence in situ hybridization for all cases. Expression and amplification results were correlated with pathologic parameters (UICC pTNM category, tumor grading) and survival. RESULTS Elevated Her2 copy numbers were observed in 87 tumors, 21 of them showing amplification. 174 tumors showed Her2 immunoreactivity/expression. HSP 90 immunoreactivity was found in 125 tumors. There was no difference between gastric carcinomas and carcinomas of the gastroesophageal junction regarding Her2 or HSP90. Both high HSP90 and Her2 expression/amplification were associated with earlier tumor stages (p<0.01), absence of lymph node metastases (p<0.02) and Laurens intestinal type (p<0.001). HSP90 correlated with Her2 expression and amplification (p<0.001 each). Expressions of HSP90 and Her2, but not Her2 amplification were associated with better prognosis (p=0.02; p=0.004; p=0.802). Moreover, Her2 expression was an independent prognostic factor for overall survival in the subgroup of gastric carcinoma patients (p=0.014) besides pT category, pN category and distant metastases. CONCLUSION Her2 expression and gene amplification occurred in a significant subset of cases. Our results suggest a favorable prognostic impact of Her2 expression. This warrants further investigations regarding the significance of Her2 non-amplified tumors showing Her2 immunoreactivity and the definition of Her2 status in gastric cancers. Moreover, the correlation of Her2 expression with the expression of Her2 chaperoning HSP90 may indicate a synergistic regulation. Targeting HSP90 with or without Her2 may offer additional therapeutic options for gastric carcinoma treatment.
Resumo:
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the functional stability of client oncoproteins, such as STAT3, Raf-1 and Akt, which play a role in the survival of malignant cells. The chaperone function of HSP90 is driven by the binding and hydrolysis of ATP. The geldanamycin analog, 17-AAG, binds to the ATP pocket of HSP90 leading to the degradation of client proteins. However, treatment with 17-AAG results in the elevation of the levels of antiapoptotic proteins HSP70 and HSP27, which may lead to cell death resistance. The increase in HSP70 and HSP27 protein levels is due to the activation of the transcription factor HSF-1 binding to the promoter region of HSP70 and HSP27 genes. HSF-1 binding subsequently promotes HSP70 and HSP27 gene expression. Based on this, I hypothesized that inhibition of transcription/translation of HSP or client proteins would enhance 17-AAG-mediated cytotoxicity. Multiple myeloma (MM) cell lines MM.1S, RPMI-8226, and U266 were used as a model. To test this hypothesis, two different strategies were used. For the first approach, a transcription inhibitor was combined with 17-AAG. The established transcription inhibitor Actinomycin D (Act D), used in the clinic, intercalates into DNA and blocks RNA elongation. Stress inducible (HSP90á, HSP70 and HSP27) and constitutive (HSP90â and HSC70) mRNA and protein levels were measured using real time RT-PCR and immunoblot assays. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the MM cell lines. This induction of HSP mRNA levels was diminished by 0.05 µg/mL Act D for 12 hours in the combination treatment, except for HSP70. At the protein level, Act D abrogated the 17-AAG-mediated induction of all HSP expression levels, including HSP70. Cytotoxic evaluation (Annexin V/7-AAD assay) of Act D in combination with 17-AAG suggested additive or more than additive interactions. For the second strategy, an agent that affected bioenergy production in addition to targeting transcription and translation was used. Since ATP is necessary for the proper folding and maturation of client proteins by HSP90, ATP depletion should lead to a decrease in client protein levels. The transcription and translation inhibitor 8-Chloro-Adenosine (8-Cl-Ado), currently in clinical trials, is metabolized into its cytotoxic form 8-Cl-ATP causing a parallel decrease of the cellular ATP pool. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the three MM cell lines evaluated. In the combination treatment, 10 µM 8-Cl-Ado for 20 hours did not abrogate the induction of HSP mRNA or protein levels. Since cellular bioenergy is necessary for the stabilization of oncoproteins by HSP90, immunoblot assays analyzing for expression levels of client proteins such as STAT3, Raf-1, and Akt were performed. Immunoblot assays detecting for the phosphorylation status of the translation repressor 4E-BP1, whose activity is modulated by upstream kinases sensitive to changes in ATP levels, were also performed. The hypophosphorylated state of 4E-BP1 leads to translation repression. Data indicated that treatment with 17-AAG alone resulted in a minor (<10%) change in STAT3, Raf-1, and Akt protein levels, while no change was observed for 4E-BP1. The combination treatment resulted in more than 50% decrease of the client protein levels and hypophosphorylation of 4E-BP1 in all MM cell lines. Treatment with 8-Cl-Ado alone resulted in less than 30% decrease in client protein levels as well as a decrease in 4E-BP1 phosphorylation. Cytotoxic evaluation of 8-Cl-Ado in combination with 17-AAG resulted in more than additive cytotoxicity when drugs were combined in a sequential manner. In summary, these data suggest that the mechanism-based combination of agents that target transcription, translation, or decrease cellular bioenergy with 17-AAG results in increase cytotoxicity when compared to the single agents. Such combination strategies may be applied in the clinic since these drugs are established chemotherapeutic agents or currently in clinical trials.
Resumo:
Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.