974 resultados para Coefficient of friction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple process models are applied to predict microstructural changes due to the thermal cycle imposed in friction stir welding. A softening model developed for heat-treatable aluminium alloys of the 6000 series is applied to the aerospace alloy 2014 in the peak-aged (T6) condition. It is found that the model is not readily applicable to alloy 2024 in the naturally aged (T3) temper, but the softening behaviour can still be described semi-empirically. Both analytical and numerical (finite element) thermal models are used to predict the thermal histories in trial welds. These are coupled to the microstructural model to investigate: (a) the hardness profile across the welded plate; (b) alloy softening ahead of the approaching welding tool. By incorporating the softening model applied to 6082-T6 alloy, the hardness profile of friction stir welds in dissimilar alloys is also predicted. © AFM, EDP Sciences 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum /particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the "mixed" lubrication regime of practical interest, in which there is "real" contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tribometer, based on a pin-on-disc machine, uses a PZT drive to produce small sinusoidal fluctuations of sliding speed. The frequency and amplitude of these fluctuations can be controlled, and the dynamic response measured. Preliminary test results show that the dynamic friction variation is influenced by the contact materials, normal force, oscillation frequency and steady sliding speed. The variation of friction force amplitude and phase with frequency gives clues about the underlying state variables determining the friction. Modelling studies illustrate the expected behaviour for idealized friction laws governed by, for example, sliding speed, contact temperature, and "rate-state" laws. © 2008 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any linearised theory of the initiation of friction-excited vibration via instability of the state of steady sliding requires information about the dynamic friction force in the form of a frequency response function for sliding friction. Recent measurements of this function for an interface consisting of a nylon pin against a glass disc are used to probe the underlying constitutive law. Results are compared to linearised predictions from the simplest ratestate model of friction, and a ratetemperature model. In both cases the observed variation with frequency is not compatible with the model predictions, although there are some significant points of similarity. The most striking result relates to variation of the normal load: any theory embodying the Coulomb relation F∝N would predict behaviour entirely at variance with the measurements, even though the steady friction force obtained during the same measurements does follow the Coulomb law. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present communication reports the changes in the specific gravity, coefficient of viscosity, fluidity and surface tension of the muscle lipid of O. striatus, a common freshwater murrel, when stored at room temp (32 ± 2°C) The specific gravity of muscle lipid was found to rise from 0.894 to 0.912 during the first 25 days of storage but registered the highest (0.925) when stored for 50 days. Surface tension seemed to rise with the duration of storage. This was, presumably, due to an increase in the forces with which the molecules in the surface of the lipid tended to compress the molecules below to the smallest possible volume. During the period of storage marked changes seemed to occur in the direction of an increase in the value of the coefficient of viscosity and a reciprocal decline in the fluidity. Evidently, the observed increase in the viscosity seemed to be the result of increased internal friction between different molecular layers of the lipid, whereas a decline in the fluidity was perhaps the consequence of its inverse correlation with the coefficient of viscosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative fishing experiments with frame nets of 0.4 and 0.5 hanging coefficients were conducted. Results indicate that net with hanging coefficient of 0.4 as more effective for better catch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tribometer, based on a pin-on-disc machine, uses a PZT drive to produce small sinusoidal fluctuations of sliding speed. The frequency and amplitude of these fluctuations can be controlled, and the dynamic response measured. Preliminary test results show that the dynamic friction variation is influenced by the contact materials, normal force, oscillation frequency and steady sliding speed. The variation of friction force amplitude and phase with frequency gives clues about the underlying state variables determining the friction. Modelling studies illustrate the expected behaviour for idealized friction laws governed by, for example, sliding speed, contact temperature, and "rate-state" laws. © 2008 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal "heel" pads (euplantulae) and a pre-tarsal "toe" pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were [Formula: see text] 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised "friction pads" that produce traction when pressed against the substrate, while arolia are "true" adhesive pads that stick to the substrate when activated by pulling forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fibre reinforced polymers (CFRP) are well-known for the excellent combination of mechanical and thermal properties with light weight. However, their tribological properties are still largely uncovered. In this work an experimental study of friction between two CFRP at weak normal load (inferior to 20 N) was performed. Two effects were scrutinuously studied during the experiments: fibre volume friction and fibre orientation. In addition to this experimental work, a modelling of a contact between two FRP was realized. It is supposed that the real area of contact consists of a multitude of microcontacts of three types: fibre-fibre, fibre-matrix and matrix-matrix. The experimental work has shown a small rise in friction coefficient with the change of fibre orientation of two composites from parallel to perpendicular relative to the sliding direction. In parallel, the proposed analytical model predicts a independence of this angle. Regarding the influence of the fibre volume fraction, Vf, the experiments reveal a decrease in friction coefficient of 50% with a change of Vf from 0% to 62%. This observation corresponds to the qualitative dependence depicted with the model. © 2012 EDP Sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many stick insects and mantophasmids possess tarsal 'heel pads' (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of 'heel pads' changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads' use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures of InSb1-xNx nanowires are investigated using the ten-band k center dot p method. It is found that nitrogen increases the Rashba coefficient of the nanowires dramatically. For thick nanowires, the Rashba coefficient may increase by more than 20 times. The semiconductor-metal transition occurs more easily in InSb1-xNx nanowires than in InSb nanowires. The electronic structure of InSb1-xNx nanowires is very different from that of the bulk material. For fixed x the bulk material is a semimetal, while the nanowires are metal-like. In InSb1-xNx bulk material and thick nanowires, an interesting decrease of electron effective mass is observed near k=0 which is induced by the nitrogen, but this phenomenon disappears in thin nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.