955 resultados para Coastwise navigation
Resumo:
Computer-aided microscopic surgery of the lateral skull base is a rare intervention in daily practice. It is often a delicate and difficult minimally invasive intervention, since orientation between the petrous bone and the petrous bone apex is often challenging. In the case of aural atresia or tumors the normal anatomical landmarks are often absent, making orientation more difficult. Navigation support, together with imaging techniques such as CT, MR and angiography, enable the surgeon in such cases to perform the operation more accurately and, in some cases, also in a shorter time. However, there are no internationally standardised indications for navigated surgery on the lateral skull base. Miniaturised robotic systems are still in the initial validation phase.
Resumo:
OBJECTIVE: The purpose of this study was to delineate the anatomy of the precentral cerebellar vein, superior vermian vein, and internal occipital vein using reconstructions of computed tomographic and magnetic resonance imaging scans with navigation software. These data were compared with previous anatomic and angiographic findings to show the resolution and accuracy of the system. METHODS: We retrospectively reviewed 100 patients with intracranial pathologies (50 computed tomographic scans with contrast and 50 magnetic resonance imaging scans with gadolinium) using a neuronavigation workstation for 3-dimensional reconstruction. Particular attention was paid to depiction of the precentral cerebellar vein, superior vermian vein, and internal occipital vein. The data were reviewed and analyzed. RESULTS: The precentral cerebellar vein, superior vermian vein, and its tributary, the supraculminate vein, were depicted in 52 (52%) patients. The internal occipital vein was delineated on 99 (49.5%) sides and joined the basal vein and vein of Galen in 39 (39.4%) and 60 (60.6%) hemispheres, respectively. Comparing these results with previous angiographic studies, the ability of the neuronavigation system for depicting these vessels is similar to that of digital subtraction angiography. CONCLUSION: This study illustrates the possibility of depicting the small vessels draining into the pineal region venous complex using 3-dimensional neuronavigation with an accuracy comparable to that of digital subtraction angiography. This tool provides important information for both surgical planning and intraoperative orientation.
Resumo:
Mainstream IDEs generally rely on the static structure of a software project to support browsing and navigation. We propose HeatMaps, a simple but highly configurable technique to enrich the way an IDE displays the static structure of a software system with additional kinds of information. A heatmap highlights software artifacts according to various metric values, such as bright red or pale blue, to indicate their potential degree of interest. We present a prototype system that implements heatmaps, and we describe an initial study that assesses the degree to which different heatmaps effectively guide developers in navigating software.
Resumo:
The IDE used in most Smalltalk dialects such as Pharo, Squeak or Cincom Smalltalk did not evolve significantly over the last years, if not to say decades. For other languages, for instance Java, the available IDEs made tremendous progress as Eclipse or NetBeans illustrate. While the Smalltalk IDE served as an exemplar for many years, other IDEs caught up or even overtook the erstwhile leader in terms of feature-richness, usability, or code navigation facilities. In this paper we first analyze the difficulty of software navigation in the Smalltalk IDE and second illustrate with concrete examples the features we added to the Smalltalk IDE to fill the gap to modern IDEs and to provide novel, improved means to navigate source space. We show that thanks to the agility and dynamics of Smalltalk, we are able to extend and enhance with reasonable effort the Smalltalk IDE to better support software navigation, program comprehension, and software maintenance in general. One such support is the integration of dynamic information into the static source views we are familiar with. Other means include easing the access to static information (for instance by better arranging important packages) or helping developers re-locating artifacts of interest (for example with a categorization system such as smart groups).
Resumo:
While navigation systems for cars are in widespread use, only recently, indoor navigation systems based on smartphone apps became technically feasible. Hence tools in order to plan and evaluate particular designs of information provision are needed. Since tests in real infrastructures are costly and environmental conditions cannot be held constant, one must resort to virtual infrastructures. This paper presents the development of an environment for the support of the design of indoor navigation systems whose center piece consists in a hands-free navigation method using the Microsoft Kinect in the four-sided Definitely Affordable Virtual Environment (DAVE). Navigation controls using the user's gestures and postures as the input to the controls are designed and implemented. The installation of expensive and bulky hardware like treadmills is avoided while still giving the user a good impression of the distance she has traveled in virtual space. An advantage in comparison to approaches using a head mounted display is that the DAVE allows the users to interact with their smartphone. Thus the effects of different indoor navigation systems can be evaluated already in the planning phase using the resulting system
Resumo:
The place-specific activity of hippocampal cells provides downstream structures with information regarding an animal's position within an environment and, perhaps, the location of goals within that environment. In rodents, recent research has suggested that distal cues primarily set the orientation of the spatial representation, whereas the boundaries of the behavioral apparatus determine the locations of place activity. The current study was designed to address possible biases in some previous research that may have minimized the likelihood of observing place activity bound to distal cues. Hippocampal single-unit activity was recorded from six freely moving rats as they were trained to perform a tone-initiated place-preference task on an open-field platform. To investigate whether place activity was bound to the room- or platform-based coordinate frame (or both), the platform was translated within the room at an "early" and at a "late" phase of task acquisition (Shift 1 and Shift 2). At both time points, CA1 and CA3 place cells demonstrated room-associated and/or platform-associated activity, or remapped in response to the platform shift. Shift 1 revealed place activity that reflected an interaction between a dominant platform-based (proximal) coordinate frame and a weaker room-based (distal) frame because many CA1 and CA3 place fields shifted to a location intermediate to the two reference frames. Shift 2 resulted in place activity that became more strongly bound to either the platform- or room-based coordinate frame, suggesting the emergence of two independent spatial frames of reference (with many more cells participating in platform-based than in room-based representations).
Resumo:
Femoroacetabular impingement (FAI) before or after Periacetabular Osteotomy (PAO) is surprisingly frequent and surgeons need to be aware of the risk preoperatively and be able to avoid it intraoperatively. In this paper we present a novel computer assisted planning and navigation system for PAO with impingement analysis and range of motion (ROM) optimization. Our system starts with a fully automatic detection of the acetabular rim, which allows for quantifying the acetabular morphology with parameters such as acetabular version, inclination and femoral head coverage ratio for a computer assisted diagnosis and planning. The planned situation was optimized with impingement simulation by balancing acetabuar coverage with ROM. Intra-operatively navigation was conducted until the optimized planning situation was achieved. Our experimental results demonstrated: 1) The fully automated acetabular rim detection was validated with accuracy 1.1 ± 0.7mm; 2) The optimized PAO planning improved ROM significantly compared to that without ROM optimization; 3) By comparing the pre-operatively planned situation and the intra-operatively achieved situation, sub-degree accuracy was achieved for all directions.
Resumo:
In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.
Resumo:
PURPOSE The pararectus approach has been validated for managing acetabular fractures. We hypothesised it might be an alternative approach for performing periacetabular osteotomy (PAO). METHODS Using four cadaver specimens, we randomly performed PAO through either the pararectus or a modified Smith-Petersen (SP) approach. We assessed technical feasibility and safety. Furthermore, we controlled fragment mobility using a surgical navigation system and compared mobility between approaches. The navigation system's accuracy was tested by cross-examination with validated preoperative planning software. RESULTS The pararectus approach is technically feasible, allowing for adequate exposure, safe osteotomies and excellent control of structures at risk. Fragment mobility is equal to that achieved through the SP approach. Validation of these measurements yielded a mean difference of less <1 mm without statistical significance. CONCLUSION Experimental data suggests the pararectus approach might be an alternative approach for performing PAO. Clinical validation is necessary to confirm these promising preliminary results.