969 resultados para Chromatin.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene transfer that relies on integrating vectors often suffers from epigenetic or regulatory effects that influence the expression of the therapeutic gene and=or of cellular genes located near the vector integration site in the chromosome. Insulator elements act to block gene activation by enhancers, while chromatin domain boundary or barrier sequences prevent gene-silencing effects. At present, the modes of action of insulator and barriers are poorly understood, and their use in the context of gene therapies remains to be documented. Using combinations of reporter genes coding for indicator fluorescent proteins, we constructed assay systems that allow the quantification of the insulator or of the barrier activities of genetic elements in individual cells. This presentation will illustrate how these assay systems were used to identify short DNA elements that can insulate nearby genes from activation by viral vector enhancer elements, and=or that can block the propagation of a silent chromatin structure that leads to gene silencing. We will show that small elements of the order of 100-400 nucleotides can be designed to achieve both insulator and boundary function, as needed for safer integrating viral vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is possible to distribute the 17 autosomic fragile sites presently known in three categories according to their sensitivity: BrdU-sensitive sites (10q25, 16q22, 17p12), distamycin A-sensitive sites (16q22, 17p12) and folate- and thymidilate-sensitive sites (2q11-q14, 3p14, 6p23, 7p11, 8q22, 9p21, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, 16q23, 17p12, 20p11). Four fundamental problems are discussed, first the relation between the presence of a fragile site and the phenotype, secondly the incidence of autosomic sites, third the origin of fragility (particularity of DNA structure, defect of the DNA/proteins binding and abnormal arrangement of chromatin, abnormality of the metaphasic scaffold) and fourth the localization of fragile sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CREB-binding protein (CBP) is a large nuclear protein that regulates many signal transduction pathways and is involved in chromatin-mediated transcription. The translocation t(8;16)(p11;p13.3) consistently disrupts two genes: the CBP gene on chromosome band 16p13.3 and the MOZ gene on chromosome band 8p11. Although a fusion of these two genes as a result of the translocation is expected, attempts at detecting the fusion transcript by reverse transcriptase polymerase chain reaction (RT-PCR) have proven difficult; to date, only one in-frame CBP/MOZ fusion transcript has been reported. We therefore sought other reliable means of detecting CBP rearrangements. We applied fluorescence in situ hybridization (FISH) and Southern blot analyses to a series of AML patients with a t(8;16) and detected DNA rearrangements of both the CBP and the MOZ loci in all cases tested. All six cases examined for CBP rearrangements have breakpoints within a 13 kb breakpoint cluster region at the 5' end of the CBP gene. Additionally, we used a MOZ cDNA probe to construct a surrounding cosmid contig and detect DNA rearrangements in three t(8;16) cases, all of which display rearrangements within a 6 kb genomic fragment of the MOZ gene. We have thus developed a series of cosmid probes that consistently detect the disruption of the CBP gene in t(8;16) patients. These clones could potentially be used to screen other cancer-associated or congenital translocations involving chromosome band 16p13.3 as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix attachment regions (MARs) are DNA sequences that may be involved in anchoring DNA/chromatin to the nuclear matrix and they have been described in both mammalian and plant species. MARs possess a number of features that facilitate the opening and maintenance of euchromatin. When incorporated into viral or non-viral vectors MARs can increase transgene expression and limit position-effects. They have been used extensively to improve transgene expression and recombinant protein production and promising studies on the potential use of MAR elements for mammalian gene therapy have appeared. These illustrate how MARs may be used to mediate sustained or higher levels of expression of therapeutic genes and/or to reduce the viral vector multiplicity of infection required to achieve consistent expression. More recently, the discovery of potent MAR elements and the development of improved vectors for transgene delivery, notably non-viral episomal vectors, has strengthened interest in their use to mediate expression of therapeutic transgenes. This article will describe the progress made in this field, and it will discuss future directions and issues to be addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent data on the AFM studies of nucleoprotein complexes of different types are reviewed in this paper. The first section describes the progress in the sample preparation methods for AFM studies of nucleic acids and nucleoprotein complexes. The second part of this paper reviews AFM data on studies of complexes of DNA with regulatory proteins. These studies include two different types of DNA distortion induced by proteins binding: local bending of DNA at sites of protein binding and formation of large loops due to protein-protein interactions between molecules bound to distant sites along the DNA molecules (DNA looping). The prospects for use of AFM for physical mapping of genomes are discussed in this section as well. The third part of the paper reviews data on studies of complexes of DNA with non-sequence specific binding proteins. Special emphasis is given to studies of chromatin which have resulted in progress in the understanding of structure of native chromatin fiber. In this section, novel data on AFM studies of RecA-DNA filaments and complexes of dsRNA with the dsRNA-specific protein p25 are also presented. Discussion of the substrate preparation procedures in relation to the AFM studies of nucleoprotein complexes is given in the final section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Gene duplication is an essential source of material for the origin of genetic novelties. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with at least ~3600 detectable retrocopies. We find that ~30% of these retrocopies are transcribed, generally in testes. Their transcription often relies on preexisting regulatory elements (or open chromatin) close to their insertion site, which is illustrated by mRNA molecules containing retrocopies fused to their neighboring genes. Retrocopies appear to have been profoundly shaped by selection. Consistently, human retrocopies with an intact open reading (ORF) are more often transcribed than retropseudogenes, which leads to a minimal estimate of 120 functional retrogenes present in our genome. We also performed an analysis of Ka/Ks for human retrocopies. This analysis demonstrates that several intact retrocopies evolved under purifying selection and yields an estimated formation rate of ~1 retrogene per million year in the primate lineage. Using DNA sequencing and evolutionary simulations, we have identified 7 such primate-specific retrogenes that emerged on the lineage leading to humans In therian genomes, we found an excess of retrogenes with X-linked parents. Expression analyses support the idea that this "out of X" movement was driven by natural selection to produce autosomal functional counterparts for X-linked genes, which are silenced during male meiosis. Phylogenetic dating of this "out of X" movement suggests that our sex chromosomes arose about 180 MYA ago and are thus much younger than previously thought. Finally, we have also analyzed young gene duplications (and deletions) that arose by non allelic-homologous recombination and are not fixed in species. Using wild-caught and laboratory animals, we detected thousands of DNA segments that are polymorphic in copy number in mice. These copy number variants were found to profoundly alter the transcriptome of several mouse tissues. Strikingly, their influence on gene expression is not limited to the gene they contain but seems to extend to genes located up to 1.5 million bases away.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of Notch signaling in growth/differentiation control of mammalian epithelial cells is still poorly defined. We show that keratinocyte-specific deletion of the Notch1 gene results in marked epidermal hyperplasia and deregulated expression of multiple differentiation markers. In differentiating primary keratinocytes in vitro endogenous Notch1 is required for induction of p21WAF1/Cip1 expression, and activated Notch1 causes growth suppression by inducing p21WAF1/Cip1 expression. Activated Notch1 also induces expression of 'early' differentiation markers, while suppressing the late markers. Induction of p21WAF1/Cip1 expression and early differentiation markers occur through two different mechanisms. The RBP-Jkappa protein binds directly to the endogenous p21 promoter and p21 expression is induced specifically by activated Notch1 through RBP-Jkappa-dependent transcription. Expression of early differentiation markers is RBP-Jkappa-independent and can be induced by both activated Notch1 and Notch2, as well as the highly conserved ankyrin repeat domain of the Notch1 cytoplasmic region. Thus, Notch signaling triggers two distinct pathways leading to keratinocyte growth arrest and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region. The latter contains transcriptionally active and partly decondensed chromatin at the surface of condensed chromatin domains. We studied the distribution of the damage-recognition protein XPC and of XPA, which is a central component of the chromatin-associated NER complex. Both XPC and XPA rapidly accumulate in the perichromatin region after UV irradiation, whereas only XPC is also moderately enriched in condensed chromatin domains. These observations suggest that DNA damage is detected by XPC throughout condensed chromatin domains, whereas DNA-repair complexes seem preferentially assembled in the perichromatin region. We propose that UV-damaged DNA inside condensed chromatin domains is relocated to the perichromatin region, similar to what has been shown for DNA replication. In support of this, we provide evidence that UV-damaged chromatin domains undergo expansion, which might facilitate the translocation process. Our results offer novel insight into the dynamic spatial organization of DNA repair in the human cell nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Pseudogenes have long been considered as nonfunctional genomic sequences. However, recent evidence suggests that many of them might have some form of biological activity, and the possibility of functionality has increased interest in their accurate annotation and integration with functional genomics data. RESULTS: As part of the GENCODE annotation of the human genome, we present the first genome-wide pseudogene assignment for protein-coding genes, based on both large-scale manual annotation and in silico pipelines. A key aspect of this coupled approach is that it allows us to identify pseudogenes in an unbiased fashion as well as untangle complex events through manual evaluation. We integrate the pseudogene annotations with the extensive ENCODE functional genomics information. In particular, we determine the expression level, transcription-factor and RNA polymerase II binding, and chromatin marks associated with each pseudogene. Based on their distribution, we develop simple statistical models for each type of activity, which we validate with large-scale RT-PCR-Seq experiments. Finally, we compare our pseudogenes with conservation and variation data from primate alignments and the 1000 Genomes project, producing lists of pseudogenes potentially under selection. CONCLUSIONS: At one extreme, some pseudogenes possess conventional characteristics of functionality; these may represent genes that have recently died. On the other hand, we find interesting patterns of partial activity, which may suggest that dead genes are being resurrected as functioning non-coding RNAs. The activity data of each pseudogene are stored in an associated resource, psiDR, which will be useful for the initial identification of potentially functional pseudogenes.