883 resultados para Chlorophyta (green seaweeds)
Resumo:
A colorless transparent, blue green emission material was fabricated by sintering porous glass impregnated with copper ions. The emission spectral profile obtained from Cu+ -doped high silica glass (HSG) by 267-mn monochromatic light excitation matches that obtained by pumping with an 800-nm femtosecond laser, indicating that the emissions in both cases come from an identical origin. The upconversion emission excited by 800-nm femtosecond laser is considered to be a three-photon excitation process. A tentative scheme of upconverted emission from Cu+ -doped HSG was also proposed. The glass materials presented herein are expected to find application in lamps, high density optical storage, and three-dimensional color displays.
Resumo:
The increasing harvest of 7 edible seaweeds in Fiji and their importance to the economy of indigenous Fijians are discussed. Traditional methods in the collection, preparation and consumption of seaweeds by the Fijians are also presented.
Resumo:
The objective of this study was to investigate the spatial patterns in green sea urchin (Strongylocentrotus droebachiensis) density off the coast of Maine, using data from a fishery-independent survey program, to estimate the exploitable biomass of this species. The dependence of sea urchin variables on the environment, the lack of stationarity, and the presence of discontinuities in the study area made intrinsic geostatistics inappropriate for the study; therefore, we used triangulated irregular networks (TINs) to characterize the large-scale patterns in sea urchin density. The resulting density surfaces were modified to include only areas of the appropriate substrate type and depth zone, and were used to calculate total biomass. Exploitable biomass was estimated by using two different sea urchin density threshold values, which made different assumptions about the fishing industry. We observed considerable spatial variability on both small and large scales, including large-scale patterns in sea urchin density related to depth and fishing pressure. We conclude that the TIN method provides a reasonable spatial approach for generating biomass estimates for a fishery unsuited to geostatistics, but we suggest further studies into uncertainty estimation and the selection of threshold density values.
Resumo:
Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.