927 resultados para Chemical-structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tannins are widespread throughout the plant kingdom, occurring as hydrolysable and condensed tannins and at different levels in several animal feeding sources. Recent years have seen an increasing interest in the use of tannin-rich plants and plant extracts in ruminant diets for improving the quality of their edible products. Some results show that this strategy is effective in improving the fatty acid profile of meat and milk, increasing the level of health-beneficial fatty acids as well as enhancing the oxidative stability of the products. However, the use of tannin-rich feed in animal diets requires great care, due to its possible detrimental effects on animal performance and induction of metabolic disorders. Although promising, the results of studies on the effects of tannins on animal performance and quality of their products are still controversial, probably depending on type and chemical structure of tannins, amount ingested, composition of diet, and species of animal. In this chapter, the current knowledge regarding the effect of dietary tannins on animal performance and the quality of their products (meat and milk), particularly on the fatty acid profile, oxidative stability, and organoleptic properties, is reviewed. The tannin chemistry diversity and its occurrence in ruminant diets, as well as its beneficial and adverse effects on ruminants, will be briefly reviewed, and aspects related to oral cavity physiology, saliva production/composition, and postingestive effects will also be discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the psychiatric diseases, bipolar disorder (BD) is the sixth leading cause of disability with a prevalence up to 4 % worldwide. BD is a complex neuropsychiatric condition which alternates episodes of mania with symptoms of depression. Although the neurobiological pathways are not completely clarified, the dopamine (DA) hypothesis, recognized as the leading theory explaining the pathophysiology of the malady, states that the dramatically compromised homeostatic regulation of dopaminergic circuits leads to alternated changes in DA neurotransmission. Modulation of D2 and D3 receptors (D2/3R) through partial agonists represents the first-line therapeutic strategy for psychiatric diseases. Moreover, a deregulation of the enzyme glycogen synthase kinase-3β (GSK-3β) has been reported as peculiar feature of BD. In this scenario, the concomitant modulation of D3R and GSK-3β, by employing multitarget compounds, could offer promises to achieve an effective cure of this illness. In the light of these findings, we rationally envisaged the pharmacophoric model at the basis of the design of several D3R partial agonists, suitable to be exploited for the dual D3R/GSK-3β ligand design. Thus, synthetic efforts were addressed to develop a first set of hybrid molecules able to concurrently modulate the selected targets. For a chemical structure point of view, we employed different spacers to combine a substituted aryl-piperazine moiety, reported in previously discovered D3R modulators, with a pyrazole-based fragment, already identified in GSK-3β inhibitors. A fluorescent and a cellular functional assays were carried out to assess the activity of all synthetized compounds against GSK-3β and on D3R, respectively. Most of the derivatives proved to effectively modulate both GSK-3β and D3R with potencies in the low-µM and low-nM range, respectively. The consistent biological data allowed us to identify some lead candidates worth to be further modified with the aim to optimize their biological profile and to perform a structure-activity relationship (SAR) study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo investiga a otimização da resistência ao cisalhamento no plano de juntas de sobreposição co-curadas do compósito termoplástico unidirecional auto-reforçado de polietileno de baixa densidade reciclado reforçado por fibras de polietileno de ultra alto peso molecular através da relação desta resistência com os parâmetros processuais de prensagem a quente para a conformação da junta (pressão, temperatura, tempo e comprimento). A matriz teve sua estrutura química analisada para verificar potenciais degradações devidas à sua origem de reciclagem. Matriz e reforço foram caracterizados termicamente para definir a janela de temperatura de processamento de junta a ser estudada. A elaboração das condições de cura dos corpos de prova foi feita de acordo com a metodologia de Projeto de Experimento de Superfície de Resposta e a relação entre a resistência ao cisalhamento das juntas e os respectivos parâmetros de cura foi obtida através de equação de regressão gerada pelo método dos Mínimos Quadrados Ordinários. A caracterização mecânica em tração do material foi analisada micro e macromecanicamente. A análise química da matriz não demonstrou a presença de grupos carboxílicos que evidenciassem degradação por ramificações de cadeia e reticulação advindos da reciclagem do material. As metodologias de ensaio propostas demonstraram ser eficazes, podendo servir como base para a constituição de normas técnicas. Demonstrou-se que é possível obter juntas com resistência ótima ao cisalhamento de 6,88 MPa quando processadas a 1 bar, 115°C, 5 min e com 12 mm. A análise da fratura revelou que a ruptura por cisalhamento das juntas foi precedida por múltiplas fissuras longitudinais induzidas por sucessivos debondings, tanto dentro quanto fora da junta, devido à tensão transversal acumulada na mesma, proporcional a seu comprimento. A temperatura demonstrou ser o parâmetro de processamento mais relevante para a performance da junta, a qual é pouco afetada por variações na pressão e tempo de cura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Driven by environmental reasons and the expected depletion of crude oil, bio-based polymers are currently undergoing a renaissance in the attempt to replace fossil-based ones. The present work aims at contributing in the development of the steps that start from biomass and move to new polymeric multifunctional materials. The study focuses on two bio-based building blocks (itaconic and vanillic acids) characterized by exploitable functionalities, i.e. a lateral double bond and a substituted aromatic ring respectively, able to confer interesting properties to the final polymers. The lateral double bond of dimethyl itaconate was functionalized via thia-Michael addition reaction obtaining a thermo-stable building block that can undergo polycondensation under classical conditions of reaction. The addition of a long lateral chain allows the polymer to express antimicrobial activity against Staphylococcus aureus making it attractive for packaging and targeting antimicrobial applications. Moreover, the architecture of the homopolymer was modified by means of copolymerization with dimethyl 2,5-furandicarboxylate thus improving the rigidity and obtaining a thermo-processable material. Potential applications as thermoset or thermoplastic material have been discussed. As concerns vanillic acid, the presence of aromatic rings on the polymer backbone imparts high thermal stability, but brittle behaviour in the homopolymer. Therefore, the architecture of the polyester was successfully tuned by means of copolymerization with a flexible bio-based comonomer, i.e. ω-pentadecalactone, providing processable random copolymers. An in depth investigation of water transport mechanism has been undertaken on the synthesized polyesters. Since the copolymers present a succession of aromatic and aliphatic units, as a consequence of the chemical structure water vapor permeability interposes between polyethylene and poly(ethylene terephthalate) proving that the copolyesters are suitable for packaging applications. Moving towards a sustainable model of development, novel sustainable synthetic pathways for the eco-design of new bio-based polymeric structures with high value functionalities and different potential applications have been successfully developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The market for paint products with raw materials derived from renewable sources is growing rapidly in the building industry. When high performance in wet scrub resistance is required, “washable” paints are used. However, formulating products with Bio-Based raw materials generally results in a decrease in performances compared to similar products with raw materials from fossil sources. Therefore, a new formulation approach is needed to characterize polymeric binders from renewable sources and to consider the synergistic effects given by blends of polymeric binders of different origin and chemical structure. To date, the development of new formulations that imply less environmental impact is necessary if these products have to remain competitive in the marketplace. During the trainingship in IVAS S.p.A., washable paints with different PVC (Pigment Volume Concentration) were formulated and tested, evaluating whether the performance of paints with polymeric binders obtained from renewable sources was comparable to those with polymeric binders from fossil sources. The binders were chemically characterized by DSC, FT-IR and NMR analysis. Characterization tests of paints were focused on the evaluation of degree of whiteness, hiding power, dirt setting, and wet scrub resistance. Following the results obtained from the available binder combinations, it was possible to formulate two washable paints with comparable performances to those from fossil sources: paint A with 20 % of alkydic polymer and 80 % styrene/acrylic polymer and paint B with 40 % of alkydic polymer and 60 % styrene/acrylic polymer. Finally, the formulation was completed by adding the mainly Bio-Based derived additives generally used for this category of paints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Illicit drug analyses usually focus on the identification and quantitation of questioned material to support the judicial process. In parallel, more and more laboratories develop physical and chemical profiling methods in a forensic intelligence perspective. The analysis of large databases resulting from this approach enables not only to draw tactical and operational intelligence, but may also contribute to the strategic overview of drugs markets. In Western Switzerland, the chemical analysis of illicit drug seizures is centralised in a laboratory hosted by the University of Lausanne. For over 8 years, this laboratory has analysed 5875 cocaine and 2728 heroin specimens, coming from respectively 1138 and 614 seizures operated by police and border guards or customs. Chemical (major and minor alkaloids, purity, cutting agents, chemical class), physical (packaging and appearance) as well as circumstantial (criminal case number, mass of drug seized, date and place of seizure) information are collated in a dedicated database for each specimen. The study capitalises on this extended database and defines several indicators to characterise the structure of drugs markets, to follow-up on their evolution and to compare cocaine and heroin markets. Relational, spatial, temporal and quantitative analyses of data reveal the emergence and importance of distribution networks. They enable to evaluate the cross-jurisdictional character of drug trafficking and the observation time of drug batches, as well as the quantity of drugs entering the market every year. Results highlight the stable nature of drugs markets over the years despite the very dynamic flows of distribution and consumption. This research work illustrates how the systematic analysis of forensic data may elicit knowledge on criminal activities at a strategic level. In combination with information from other sources, such knowledge can help to devise intelligence-based preventive and repressive measures and to discuss the impact of countermeasures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reaction of iodoacetic acid with cupric carbonate in water in dimmed light yields green Cu(ICH2COO)(2 center dot)H2O (1). From X-ray crystallography, it is found to be a tetra-acetato bridged copper(II) dimer with the water molecules occupying the apical positions. In thermogravimetry, the coordinated water molecules are lost in the temperature range 50-100 degrees C. From magnetic susceptibility measurements in the temperature range 300-1.8 K, the exchange coupling constant J is found to be -142(1) cm(-1) and g = 2.18(2) with the spin Hamiltonian H = -2J{S-Cu1 center dot S-Cu2}. It reacts with 2,2'-bipyridine (bpy) to yield [Cu(bpy)(2)I]I. It oxidises thiophenol to Ph-S-S-Ph under dry N-2 atmosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports the ligational behavior of the neutral bidentate chelating molecule 2-(3,5-dimethyl pyrazol-1-yl) benzothiazole towards the oxomolybdenum(V) center. Both mononuclear complexes of the type (MoOX3L)-O-V and binuclear complexes of the formula (Mo2O4X2L2)-O-V (where X = Cl, Br) are isolated in the solid state. The complexes are characterized by elemental analyses, various spectroscopic techniques (UV-Vis IR), magnetic susceptibility measurement at room temperature, and cyclic voltammetry for their redox behavior at a platinum electrode in CH3CN. The mononuclear complexes (MoOX3L)-O-V are found to be paramagnetic while the binuclear complexes Mo2O4X2L2 are diamagnetic. Crystal and molecular structure of the ligand and the dioxomolybdenum complex (MoO2Br2L)-O-VI (obtained from the complex MoOBr3L during crystallization) have been solved by single crystal X-ray diffraction technique. Relevant DFT calculations of the ligand and the complex (MoO2Br2L)-O-VI are also carried out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural and conformational properties of 1H-Isoindole-1,3(2H)-dione, 2-[(methoxycarbonyl)thio] (S-phthalimido O-methyl thiocarbonate) are analyzed using a combined approach including X-ray diffraction, vibrational spectra and theoretical calculation methods. The vibrational properties have been studied by infrared and Raman spectroscopies along with quantum chemical calculations (B3LYP and B3PW91 functional in connection with the 6-311++G** and aug-cc-pVDZ basis sets). The crystal structure was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic P2(1)/c space group with a = 6.795(1), b = 5.109(1), c = 30.011(3) angstrom, beta = 90.310(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the N-S-C=O group is syn (C=O double bond in synperiplanar orientation with respect to the N-S single bond). The experimental molecular structure is well reproduced by the MP2/aug-cc-pVDZ method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structure of the lowest-lying electronic states of W(2) were investigated at the CASPT2 level. The ground state is a X(1)Sigma(+)(g) state, followed by the a(3)Delta(u), b(3)Sigma(+)(u) and A(1)Delta(u) electronic states. Seven low-lying Omega-states were computed: (1)0(g)(+), (2)3(u), (3)2(u), (4)1(u), (5)0(u)(-), (6)1(u), and (7)2(u), with the ground state corresponding to the (1)0(g)(+)(X(1)Sigma(+)(g)) state. Comparison with the other VIB transition metal group dimers indicates a common pattern of electronic structure and spectroscopic properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, including relativistic effects and spin-orbit coupling, has been employed to investigate the nature of the chemical bonding in the ground state of Tc(2) and Re(2). The Tc(2) ground state is found to be a 0(g)(+) state, with an effective bond order (EBO) of 4.4, and a dissociation energy of 3.25 eV. The Re(2) ground state is a 1(g) state, with EBO = 4.3. Almost degenerate to it, is a 0(g)(+) state (T(e) = 77 cm(-1)), with EBO = 4.1. Experimental evidence also indicates that the ground state is of 1(g) nature. The dissociation energy is computed to be 5.0 eV in agreement with an experimental estimate of 4 +/- 1 eV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structure and chemical bonding of the ground and low-lying Lambda - S and Omega states of Ta(2) were investigated at the multiconfiguration second-order perturbation theory (CASSCF//CASPT2) level. The ground state of Ta(2) is computed to be a X(3)Sigma(-)(g) state (R(e) = 2.120 angstrom, omega(e) = 323 cm(-1), and D(e) = 4.65 eV), with two low-lying singlet states close to it (a(1) Sigma(+)(g) : T(e) = 409 cm(-1), R(e) = 2.131 angstrom, and omega(e) = 313 cm(-1); b(1) Gamma(g): T(e) = 1, 038 cm(-1), R(e) = 2.127 angstrom, and omega(e) = 316 cm(-1)). These electronic states are derived from the same electronic configuration: vertical bar 13 sigma(2)(g)14 sigma(2)(g)7 delta(2)(g)13 pi(4)(u)>. The effective bond order of the X(3) Sigma(-)(g) state is 4.52, which indicates that the Ta atoms are bound by a quintuple chemical bond. The a(1) Sigma(+)(g) state interacts strongly with the X(3)Sigma(-)(g) g ground state by a second-order spin-orbit interaction, giving rise to the (1)0(g)(+) (ground state) (dominated by the X(3)Sigma(-)(g) Lambda - S ground state) and (9)0(g)(+) (dominated by the a(1) Sigma(+)(g) Lambda - S state) Omega states. These results are in line with those reported for the group 5B homonuclear transition metal diatomics. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1306-1315, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.