993 resultados para Cellular culture
Resumo:
Smooth muscle cells (SMC) exhibit a functional plasticity, modulating from the mature phenotype in which the primary function is contraction, to a less differentiated state with increased capacities for motility, protein synthesis, and proliferation. The present study determined, using Western analysis, double-label immunofluorescence and confocal microscopy, whether changes in phenotypic expression of rabbit aortic SMC in culture could be correlated with alterations in expression and distribution of structural proteins. Contractile state SMC (days 1 and 3 of primary culture) showed distinct sorting of proteins into subcellular domains, consistent with the theory that the SMC structural machinery is compartmentalised within the cell. Proteins specialised for contraction (alpha -SM actin, SM-MHC, and calponin) were highly expressed in these cells and concentrated in the upper central region of the cell. Vimentin was confined to the body of the cell, providing support for the contractile apparatus but not co-localising with it. In line with its role in cell attachment and motility, beta -NM actin was localised to the cell periphery and basal cortex. The dense body protein alpha -actinin was concentrated at the cell periphery, possibly stabilising both contractile and motile apparatus. Vinculin-containing focal adhesions were well developed, indicating the cells' strong adhesion to substrate. In synthetic state SMC (passages 2-3 of culture), there was decreased expression of contractile and adhesion (vinculin) proteins with a concomitant increase in cytoskeletal proteins (beta -non-muscle [NM] actin and vimentin). These quantitative changes in structural proteins were associated with dramatic chan-es in their distribution. The distinct compartmentalisation of structural proteins observed in contractile state SMC was no longer obvious, with proteins more evenly distributed throughout die cytoplasm to accommodate altered cell function. Thus, SMC phenotypic modulation involves not only quantitative changes in contractile and cytoskeletal proteins, but also reorganisation of these proteins. Since the cytoskeleton acts as a spatial regulator of intracellular signalling, reorganisation of the cytoskeleton may lead to realignment of signalling molecules, which, in turn, may mediate the changes in function associated with SMC phenotypic modulation. (C) 2001 Wiley-Liss, Inc.
Resumo:
Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.
Resumo:
Epithelial locomotility is a fundamental determinant of tissue patterning that is subject to strict physiological regulation. The current, study sought to identify cellular signals that initiate cell migration in cultured thyroid epithelial cells. Porcine thyroid cells cultured as 3-dimensional follicles convert to 2-dimensional monolayers when deprived of agents that stimulate cAMP/PKA signaling. This morphogenetic event is driven by the activation of cell-on-substrate locomotility, providing a convenient assay for events that regulate the initiation of locomotion. In this system, the extracellular signal regulated kinase (ERK) pathway became activated as follicles converted to monolayer, as demonstrated by immunoblotting for activation-specific phosphorylation and nuclear accumulation of ERK. Inhibition of ERK activation using the drug PD98059 effectively prevented cells from beginning to migrate. PD98059 inhibited cell spreading, actin filament reorganization and the assembly of focal adhesions, cellular events that mediate the initiation of thyroid cell locomotility. Akt (PKB) signaling was also activated during follicle-to-monolayer conversion and the phosphoinositide 3-kinase (PI3-kinase) inhibitor, wortmannin, also blocked the initiation of cell movement. Wortmannin did not, however, block activation of ERK signaling. These findings, therefore, identify the ERK and PI3-kinase signaling pathways as important stimulators of thyroid cell locomotility. These findings are incorporated into a model where the initiation of thyroid cell motility constitutes a morphogenetic checkpoint regulated by coordinated changes in stimulatory (ERK, PI3-kinase) and tonic inhibitory (cAMP/PKA) signaling pathways. Cell Motil. Cytoskeleton 49:93-103, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
In this study, we examined the contribution of microtubules to epithelial morphogenesis in primary thyroid cell cultures. Thyroid follicles consist of a single layer of polarized epithelial cells surrounding a closed compartment, the follicular lumen. Freshly isolated porcine thyroid cells aggregate and reorganize to form follicles when grown in primary cultures. Follicular reorganization is principally a morphogenetic process that entails the assembly of biochemically distinct apical and basolateral membrane domains, delimited by tight junctions. The establishment of cell surface polarity during folliculogenesis coincided with the polarized redistribution of microtubules, predominantly in the developing apical poles of cells. Disruption of microtubule integrity using either colchicine or nocodazole caused loss of defined apical membrane domains, tight junctions and follicular lumina. Apical membrane and tight junction markers became randomly distributed at the outer surfaces of aggregates. In contrast, the basolateral surface markers, E-cadherin and Na+,K+-ATPase, remained correctly localized at sites of cell-cell contact and at the free surfaces of cell aggregates. These findings demonstrate that microtubules play a necessary role in thyroid epithelial morphogenesis. Specifically, microtubules are essential to preserve the correct localization of apical membrane components within enclosed cellular aggregates, a situation that is also likely to pertain where lumina must be formed from solid aggregates of epithelial precursors. (C) 2001 Wiley-Liss, Inc.
Resumo:
CD83 is an inducible glycoprotein expressed predominantly by dendritic cells (DC) and B lymphocytes. Expression of membrane CD83 (mCD83) is widely used as a marker of differentiated/ activated DC but its function and ligand(s) are presently unknown. We report the existence of a soluble form of CD83 (sCD83). Using both a sCD83-specific ELISA and Western blotting, we could demonstrate the release of sCD83 by mCD83(+) B cell and Hodgkin's disease-derived cell lines, but not mCD83(-) cells. Inhibition of de novo protein synthesis did not affect the release of sCD83 during short-term (2 h) culture of cell lines although mCD83 expression was significantly reduced, suggesting sCD83 is generated by the release of mCD83. Isolated tonsillar B lymphocytes and monocyte-derived DC, which are mCD83(low), released only low levels of sCD83 during culture. However, the differentiation/activation of these populations both up-regulated mCD83 and increased sCD83 release significantly. Analysis of sera from normal donors demonstrated the presence of low levels (121 +/- 3.6 pg/ml) of circulating sCD83. Further studies utilizing purified sCD83 and the analysis of sCD83 levels in disease may provide clues to the function and ligand(s) of CD83.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
Eight species of ectomycorrhizal (ECM) fungi in the genera Amanita. Gymnoboletus, Lactarius, and Russula were isolated from subtropical plant communities in eastem Australia. Two species were isolated from each of rainforest, Nothofagus forest, Eucalyptus forest, and Eucalyptus dominated wallum (heath) forest. These communities differ strongly in their soluble soil nitrogen (N) composition. The ability of the fungi to use inorganic (nitrate, ammonium) and organic (amide, peptide, protein) nitrogen sources was determined. As the fungi did not grow in liquid culture, a 'floating culture' technique was devised that allows hyphal growth on a screen floating on liquid medium. With some exceptions, fungal biomass production in floating culture closely reflected fungal growth on solid media assessed by total colony glucosamine content. Most isolates grown in floating culture had similar glucosamine concentrations on all N sources, with isolate specific concentrations ranging from 6 to 12 mug glucosamine g(-1) DW. However, Russula spp. had up to 1.7-fold higher glucosamine concentrations when growing with glutamine or ammonium compared to nitrate, glutathione or protein. Floating cultures supplied with 0.5, 1.5. 4.5, or 10 mm N mostly produced greatest biomass with 4.5 mM N. In vitro nitrate reductase activity (NRA) ranged from very low (0.03 mumol NO2- g(-1) fw h(-1)) in Russula sp. (wallum) to high (2.16 mumol NO2- g(-1) fw h(-1)) in Gymnoboletus sp. (rainforest) and mirrored the fungi's ability to use nitrate as a N source. All Russula spp. (wallum, Nothofagus and Eucalyptus forests), Lactarills sp, (rainforest) and.4manita sp. (wallum) utilized ammonium and glutamine but had little ability to use other N sources. In contrast,Amanita species (Nothofagus and Eucalyptus forests) grew on all N sources but produced most biomass with ammonium and glutamine. Only Gymnoboletus sp. (rainforest) showed similar growth with nitrate and ammonium as N sources. Fungal N source use was not associated with taxonomic groups, but is discussed in the context of soil N sources in the different habitats.
Resumo:
Rapid accumulation of few polyhedra (FP) mutants was detected during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in cell culture. 100% FP infected cells were observed by passage 6. The specific yield decreased from 178 polyhedra per cell at passage 2 to two polyhedra per cell at passage 6. The polyhedra at passage 6 were not biologically active, with a 28-fold reduction in potency compared to passage 3. Electron microscopy studies revealed that very few polyhedra were produced in an FP infected cell (< 10 polyhedra per section) and in most cases these polyhedra contained no virions. A specific failure in the intranuclear nucleocapsid envelopment process in the FP infected cells, leading to the accumulation of naked nucleocapsids, was observed. Genomic restriction endonuclease digestion profiles of budded virus DNA from all passages did not indicate any large DNA insertions or deletions that are often associated with such FP phenotypes for the extensively studied Autographa californica nucleopolyhedrovirus and Gaileria mellonella nucleopolyhedrovirus. Within an HaSNPV 25K FP gene homologue, a single base-pair insertion (an adenine residue) within a region of repetitive sequences (seven adenine residues) was identified in one plaque-purified HaSNPV FP mutant. Furthermore, the sequences obtained from individual clones of the 25KFP gene PCR products of a late passage revealed point mutations or single base-pair insertions occurring throughout the gene. The mechanism of FP mutation in HaSNPV is likely similar to that seen for Lymantria dispar nucleopolyhedrovirus, involving point mutations or small insertions/deletions of the 25K FP gene.