956 resultados para Cd4( ) T Cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p<0.05 and >1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alcohol is known to induce inflammation in the presence of the human immunodeficiency virus (HIV). In our previous studies, we revealed that alcohol induces cannabinoid receptors which play a role in the regulation of inflammatory cytokine production in monocyte-derived dendritic cells (MDDC). However, the ability of alcohol to alter MDDC function during HIV infection has not been clearly elucidated yet. To study the potential impact of alcohol on HIV-infected MDDC (confirmed by p24 ELISA), monocytes were isolated from commercially available buffy coats and cultured for 7 days with GM-CSF and IL-4. MDDC were infected with HIV- 1Ba-L and treated with different concentrations of alcohol (0.1% band 0.2%) for 4-7 days. MDDC phenotype, endocytosis, cytokine production, and ability to transmit HIV to T cells were analyzed. Uninfected CD4+ T cells were co-cultured for 7 days with either infected/treated MDDC or the supernatants from infected/treated MDDC. Inflammatory cytokine arrays were performed using supernatants from HIV-infected MDDC treated with alcohol. Results showed that HIV positive MDDC treated with alcohol had higher levels of infection compared to untreated HIV positive controls. CD4+ T cells exposed to HIV-infected MDDC acquired 100-fold higher levels of p24 compared to CD4+ T cells exposed to only supernatants. CD4+ T cells exposed to HIV-infected and alcohol-treated MDDC had higher levels of infection compared to controls. Cytokine array data show dysregulation of cytokine production by alcohol. In addition, MDDC phenotype and endocytic capacity were altered in the alcohol treated MDDC. Our results indicate a crucial role of MDDC in HIV transmission to T cells and provide insights into the inflammatory role alcohol exerts on dendritic cell function in the context of HIV infection. Supported by the National Institute on Alcohol Abuse and Alcoholism award R00AA021264, the National Institute on Drug Abuse award R01DA034547, and the Institute on NeuroImmune Pharmacology at FIU.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Foundational cellular immunology research of the 1960s and 1970s, together with the advent of monoclonal antibodies and flow cytometry, provided the knowledge base and the technological capability that enabled the elucidation of the role of CD4 T cells in HIV infection. Research identifying the sources and magnitude of variation in CD4 measurements, standardized reagents and protocols, and the development of clinical flow cytometers all contributed to the feasibility of widespread CD4 testing. Cohort studies and clinical trials provided the context for establishing the utility of CD4 for prognosis in HIV-infected persons, initial assessment of in vivo antiretroviral drug activity, and as a surrogate marker for clinical outcome in antiretroviral therapeutic trials. Even with sensitive HIV viral load measurement, CD4 cell counting is still utilized in determining antiretroviral therapy eligibility and time to initiate therapy. New point of care technologies are helping both to lower the cost of CD4 testing and enable its use in HIV test and treat programs around the world.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Hematopoietic stem cell renewal and differentiation are regulated through epigenetic processes. The conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes provides new insights into the epigenetic regulation of gene expression during development. Here, we studied the potential gene regulatory role of 5hmC during human hematopoiesis.

RESULTS: We used reduced representation of 5-hydroxymethylcytosine profiling (RRHP) to characterize 5hmC distribution in CD34+ cells, CD4+ T cells, CD19+ B cells, CD14+ monocytes and granulocytes. In all analyzed blood cell types, the presence of 5hmC at gene bodies correlates positively with gene expression, and highest 5hmC levels are found around transcription start sites of highly expressed genes. In CD34+ cells, 5hmC primes for the expression of genes regulating myeloid and lymphoid lineage commitment. Throughout blood cell differentiation, intragenic 5hmC is maintained at genes that are highly expressed and required for acquisition of the mature blood cell phenotype. Moreover, in CD34+ cells, the presence of 5hmC at enhancers associates with increased binding of RUNX1 and FLI1, transcription factors essential for hematopoiesis.

CONCLUSIONS: Our study provides a comprehensive genome-wide overview of 5hmC distribution in human hematopoietic cells and new insights into the epigenetic regulation of gene expression during human hematopoiesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The role of the immune system in insulin resistance associated with type 2 diabetes has been suggested. Objectives: We assessed the profile of Th1/Th2 cytokines along with the frequencies of immune cells in insulin-treated type 2 diabetic patients (T2DP). Methods: 45 T2D patients and 43 age-matched healthy subjects were selected. Serum concentrations of T-helper type 1 (Th1) and Th2 cytokines and the frequencies of innate and adaptive immunity cells were assessed. Results: T2DP were hyperglycemic and showed high level of insulin, normal levels of triglycerides and total-cholesterol and without any change in HDL-cholesterol.Compared to healthy subjects, T2DP exhibited significant decreased frequencies of neutrophils, without any change in monocytes, eosinophils and natural killer cells. The percentages of total lymphocytes (CD3+) and CD8+-T-cells decreased whereas those of regulatory T-cells increased without any change in CD4+ T-cells in T2DP. Interestingly, the frequencies of effector CD4+-T and B-cells increased in T2DP. Serum concentrations of IL-2, IFN-γ and IL-4 decreased while IL-10 significantly enhanced in T2DP, suggesting a differentiation of CD4+T helper cells towards IL-10-producing- Teff-cells in these patients. Conclusion: Insulin-treated type 2 diabetes is associated with anti-inflammatory profile consistent with differentiation of CD4+-Th-cells towards IL-10-producing-Teff-cells, concomitant with increased frequencies of Treg and B-cells, and this may probably offer prevention against certain infections or autoimmune/inflammatory diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T follicular helper (Tfh) cells support differentiation of B cells to plasma cells and high affinity antibody production in germinal centers (GC) and Tfh differentiation requires the function of B cell lymphoma 6 (Bcl6). We have now discovered that early growth response gene (Egr) 2 and 3 directly regulate the expression of Bcl6 in Tfh cells which is required for their function in regulation of GC formation. In the absence of Egr2 and 3, the expression of Bcl6 in Tfh cells is defective leading to impaired differentiation of Tfh cells resulting in a failure to form GCs following virus infection and defects in production of anti-viral antibodies. Enforced expression of Bcl6 in Egr2/3 deficient CD4 T cells partially restored Tfh differentiation and GC formation in response to virus infection. Our findings demonstrate a novel function of Egr2/3 which is important for Tfh cell development and Tfh cell mediated B cell immune responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vogt-Koyanagi-Harada disease (VKH), a well-established multiorgan disorder affecting pigmented structures, is an autoimmune disorder of melanocyte proteins in genetically susceptible individuals. Several clinical and experimental data point to the importance of the effector role of CD4+ T cells and Th1 cytokines, the relevance of searching a target protein in the melanocyte, and the relevance of the HLA-DRB1*0405 in the pathogenesis of the disease. Vogt-Koyanagi-Harada disease has a benign course when early diagnosed and adequatey treated. Full-blown recurrences are rare after the acute stage of Vogt-Koyanagi-Harada disease is over. On the other hand, clinical findings, such as progressive tissue depigmentation (including sunset glow fundus) and uveitis recurrence, indicate that ocular inflammation may persist after the acute phase. Additionally, indocyanine green angiography findings suggest the presence of choroidal inflammation in eyes without clinically detectable inflammation. The aim of this paper is to review the latest research results on Vogt-Koyanagi-Harada disease pathogenesis and chronic/convalescent stages, which may help to better understand this potentially blinding disease and to improve its treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi. Methodology/Principal Findings: First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4(+), CD8(+) and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-gamma and TNF-alpha and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, ROR gamma t and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice. Conclusion/Significance: These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 60kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10. RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+)IL-17(+), CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+)IFN-gamma(+) and CD4(+)IL-17(+) T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Control of the acute phase of Trypanosoma cruzi infection is critically dependent on cytokine-mediated macrophage activation to intracellular killing, natural killer (NK) cells, CD4(+) T cells, CD8(+) T cells and B cells. Cell-mediated immunity in T. cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered. Importantly, cytokines may also play a role in the cell-mediated immunity of infected subjects. Here we studied the role of cytokines in the regulation of innate and adaptive immunity during the acute phase of T. cruzi infection in Wistar rats. Melatonin is an effective regulator of the immune system. Macrophages and T lymphocytes, which have melatonin receptors, are target cells for the immunomodulatory function of melatonin. In this paper melatonin was orally given via two protocols: prior to and concomitant with infection. Both treatments were highly effective against T. cruzi with enhanced action for the concomitant treatment. The data suggest an up-regulation of the TH-1 immune response as all analyzed parameters, interleukin (IL)-4, IL-10, transforming growth factor-beta 1 and splenocyte proliferation, displayed reduced levels as compared with the untreated counterparts. However, the direct effects of melatonin on immune cells have not been fully investigated during T. cruzi infection. We conclude that in light of the current results, melatonin exerted important therapeutic benefits through its immune regulatory effects.