453 resultados para Cartesian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Descartes concebe que a verdadeira ordem científica é a ordem das razões, na qual se parte das verdades mais fáceis e evidentes em direção às mais difíceis e complexas. Assim, estabelece-se uma ordem única, progressiva e irreversível, onde cada membro da cadeia depende daqueles que o antecederam, de modo que cada tese possui um lugar não-intercambiável dentro da doutrina. Leibniz, ao contrário, defende que "[...] uma mesma verdade pode ter vários lugares, conforme as diferentes relações que pode possuir" (Novos Ensaios, IV, XXI, § 4). A fim de evitar as repetições, reunindo-se o máximo de verdades no mínimo de volumes, o autor propõe que a melhor ordem científica é a disposição sistemática das matérias, que consiste em uma organização do saber na qual cada lugar reenvia a outros, tornando clara a conexão entre os conhecimentos. Em contraposição ao modelo de sistema cartesiano, no modelo leibniziano, as teses se fundamentam mutuamente e a ordem das verdades estabelecidas é reversível. Ora, é devido a essas diferenças na concepção de sistema que Leibniz, ao contrário de Descartes, pode pretender tomar o que há de melhor nos sistemas legados pela tradição para constituir o seu próprio sistema, já que para ele há uma certa maleabilidade na constituição do sistema filosófico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early malnutrition refers to inadequate nutrition during the critical period of nervous system development followed by nutritional recovery, resulting in a short stature according to age but normal weight according to short stature. We measured the effects of early malnutrition on contrast sensitivity (CS) to concentric circular gratings in 18 children of both sexes, aged 8 to 11 years (mean = 9.2 years, standard deviation = .99 years). Nine of the children were eutrophic (E group), and nine experienced early malnutrition (EM group) based on state healthcare records and Waterlow's anthropometric parameters. Contrast sensitivity to four spatial frequencies (.25, 1.0, 2.0, and 8.0 cycles per degree [cpd]) was measured using a temporal two-alternative forced-choice psychophysical method with mean luminance of 40.1 cd/m². Statistical analyses showed significant differences between groups and a group × frequency interaction. EM group was significantly less sensitive than the E group to the 8.0 cpd frequency and needed 1.49-times more contrast to detect the gratings. These results suggest that early malnutrition impairs CS to high-spatial-frequency concentric circular gratings in children. Therefore, early malnutrition, which is known to affect primary visual cortical areas, may also affect higher visual cortical areas such as V4 and the inferotemporal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit gewährte neue Einblicke in zwei fundamentale Vorgänge der frühen Neurogenese von Drosophila melanogaster. Der erste Teil untersuchte die zeitliche Spezifizierung der Neuroblastenidentitäten. Durch die Expression verschiedener Gene entlang der Dorsoventral- und der Anterioposteriorachse wird ein kartesisches Koordinatensystem aufgebaut, indem ein Neuroblast (NB), der in einem bestimmten Quadranten entsteht, eine spezifische Identität erhält. Die Delamination der NBs erfolgt in fünf Segregationswellen, wobei in jeder Welle die gleiche Population NBs gebildet wird. In dieser Arbeit konnte nun gezeigt werden, dass es nicht nur einen räumlichen, sondern auch einen zeitlichen Aspekt bei der Entstehung der NBs gibt: So zeigten Transplantationsexperimente, dass sowohl im frühen als auch im späten Neuroektoderm extrinsische induktive Signale an der Spezifizierung der Neuroblastenidentität beteiligt sind. Die Natur dieser Signale bleibt noch unklar. Allerdings stellen die Segmentpolaritätsgene aufgrund ihrer dynamischen Expression eine potenzielle Kandidatengruppe dar. Der zweite Teil beschäftigte sich mit der segmentalen Spezifizierung der Neuroblasten. Für diesen Prozess zeigten frühere Genexpressionsstudien, dass NBs, die zwar an korrespondierenden Positionen innerhalb des kartesischen Systems, aber in unterschiedlichen Segmenten gebildet werden, die gleichen Genexpressionsmuster aufweisen und fast identische Zellstammbäume hervorbringen. Einige dieser seriell homologen NBs generieren jedoch segmentspezifische Zellstammbäume – ein solches Beispiel ist der NB6-4, der als Modellsystem benutzt wurde. Für die thorakale Variante dieses NBs konnte ich zeigen, dass die Homöotischen Gene zur Spezifizierung nicht notwendig sind – thorakales Schicksal ist eine Grundidentität. Diese wird in abdominalen Segmenten jedoch durch die Funktion der Homöotischen Gene abdominal-A (abd-A) und Abdominal-B (Abd-B) in abdominales Schicksal transformiert. Dieser segmentale Unterschied wird durch die Regulation des Zellzyklusgens CycE bewerkstelligen. Genauer: CycE ist notwendig, um neurogliales Schicksal in thorakalen Segmenten zu generieren und ausreichend, dieses Schicksal ebenfalls in abdominalen Segmenten zu erzeugen. Eine direkte Inhibierung der Expression von CycE durch Abd-A in abdominalen Segmenten führt dagegen zu einer differenziellen Expression von CycE im neuronalen thorakalen Anteil des Zellstammbaums. Weiterhin konnten in einem Enhancerelement, das für die Expression von CycE im Nervensystem verantwortlich ist, mehrere Bindestellen für Abd-A und Abd-B gefunden werden. Die gewonnen Daten legen – in Verbindung mit bereits bekannten Ergebnissen – den Schluss nahe, dass diese neuronspezifizierende Funktion von CycE unabhängig von seiner Rolle im Zellzyklus ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The international growing concern for the human exposure to magnetic fields generated by electric power lines has unavoidably led to imposing legal limits. Respecting these limits, implies being able to calculate easily and accurately the generated magnetic field also in complex configurations. Twisting of phase conductors is such a case. The consolidated exact and approximated theory regarding a single-circuit twisted three-phase power cable line has been reported along with the proposal of an innovative simplified formula obtained by means of an heuristic procedure. This formula, although being dramatically simpler, is proven to be a good approximation of the analytical formula and at the same time much more accurate than the approximated formula found in literature. The double-circuit twisted three-phase power cable line case has been studied following different approaches of increasing complexity and accuracy. In this framework, the effectiveness of the above-mentioned innovative formula is also examined. The experimental verification of the correctness of the twisted double-circuit theoretical analysis has permitted its extension to multiple-circuit twisted three-phase power cable lines. In addition, appropriate 2D and, in particularly, 3D numerical codes for simulating real existing overhead power lines for the calculation of the magnetic field in their vicinity have been created. Finally, an innovative ‘smart’ measurement and evaluation system of the magnetic field is being proposed, described and validated, which deals with the experimentally-based evaluation of the total magnetic field B generated by multiple sources in complex three-dimensional arrangements, carried out on the basis of the measurement of the three Cartesian field components and their correlation with the field currents via multilinear regression techniques. The ultimate goal is verifying that magnetic induction intensity is within the prescribed limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nell'ottica di trovare modalità sempre più intuitive per movimentare manipolatori industriali l’obiettivo della tesi è quello di realizzare una mobile app su piattaforma Android in grado appunto di movimentare un generico manipolatore industriale. L'applicazione sviluppata fornisce all'utente un’interfaccia semplice e intuitiva che permette, dopo un’opportuna configurazione iniziale, di controllare il moto di un manipolatore industriale attraverso l’uso del touch screen e degli elementi grafici dell’interfaccia. Oltre a istruire un manipolatore l’applicazione offre anche delle funzionalità per il salvataggio e la gestione di determinate configurazioni che il manipolatore può assumere nello spazio. Il grande vantaggio dell’applicazione è quello di fornire un’interfaccia universale per la movimentazione di qualsiasi manipolatore. Si può affermare quindi che essa fornisce un livello di astrazione superiore. In questo progetto di tesi è stato effettuato il testing dell'applicazione sviluppata sia con il manipolatore industriale Comau Smart Six, robot antropomorfo a 6 gradi di libertà, sia con un manipolatore simulato in Unity 3D. Sono stati raccolti dei dati, in particolare dei grafici, che mettono in relazione i comandi impartiti al manipolatore e i dati ricevuti da questo, in modo da ricavarne dei parametri che misurano l'efficienza e la correttezza dell'applicazione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the philosophical ideas of Plato, perhaps the most famous is his doctrine of forms. This doctrine has faced harsh criticism due, in large part, to the interpretations of this position by modern philosophers such as René Descartes, John Locke, and Immanuel Kant. For example, Plato has been interpreted as presenting a ¿two-worlds¿ approach to form and thing and as advancing a rationalist approach to epistemology. His forms have often been interpreted as ideas and as perfect copies of the things of the visible world. In this thesis, I argue that these, along with other interpretations of Plato presented by the moderns, are based on misunderstandings of Plato¿s overall philosophy. In so doing, I attempt to show that the doctrine of forms cannot be directly interpreted into the language of Cartesian, Lockean, and Kantian metaphysics and epistemology, and thus should not be prematurely dismissed because of these modern Platonic interpretations. By analyzing the Platonic dialogues beside the writings of the modern philosophers, I conclude that three of the most prominent modern philosophers, as representatives of their respective philosophical frameworks, have fundamentally misunderstood the nature of Plato¿s famous doctrine of forms. This could have significant implications for the future of metaphysics and epistemology by providing an interpretation of Plato which adds to, instead of contradicts, the developments of modern philosophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS: Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS: The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION: Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen consumption (VO2 microL/h/mg) of sham and of traumatized rat brains within 30 min and 6 h after a lateral fluid percussion injury (FPI) was measured with the Cartesian microrespirometer. Brain slices were cut at the plain of injury and site-specific 20-60-microg cores of tissue were transferred to the microrespirometer. In sham brains, the cortical VO2 (CVO2) was 13.78+/-0.64 and the hippocampal VO2 (HPVO2) was 11.20+/-0.58 microL/h/mg (p<0.05). Within 30 min of the injury, the respective values of 16.89+/-0.55 and 14.91+/-0.06 were significantly increased (p<0.05). The combined VO2 (CVO2, HPVO2) of 12.49+/-0.06 microL/h/mg in shams was significantly less than the combined VO2 of 15.90+/-0.59 microL/h/mg at 30 min post FPI (p<0.001). The maximal CVO2 of 19.49+/-1.10 microL/h/mg and the maximal HPVO2 of 15.98+/-0.99 microL/h/mg were both obtained from the ipsilateral side of the injury. Whereas the contralateral cortical value for injured brains was not significantly different from that of the shams, both ipsilateral and contralateral hippocampal values were significantly greater than that of the shams in response to injury (p<0.05). By 6 h postinjury, the combined VO2 had dropped to 10.01+/-0.84 microL/h/mg but was not significantly lower than the sham values. The data indicate that normal CVO2 is greater than normal HPVO2. The FPI produces significant increases in both CVO2 and HPVO2. Also, while the immediate increase in CVO2 appears to be injury-site dependent, that is, regional, the increase in HPVO2 appears to be global.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the evolution of an artificial neural network (ANN) to assist in the problem of indoor robotic localization. We investigate the design and building of an autonomous localization system based on information gathered from wireless networks (WN). The article focuses on the evolved ANN, which provides the position of a robot in a space, as in a Cartesian coordinate system, corroborating with the evolutionary robotic research area and showing its practical viability. The proposed system was tested in several experiments, evaluating not only the impact of different evolutionary computation parameters but also the role of the transfer functions on the evolution of the ANN. Results show that slight variations in the parameters lead to significant differences on the evolution process and, therefore, in the accuracy of the robot position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many of the natural and physical sciences, measurements are directions, either in two or three dimensions. The analysis of directional data relies on specific statistical models and procedures, which differ from the usual models and methodologies of Cartesian data. This chapter briefly introduces statistical models and inference for this type of data. The basic von Mises-Fisher distribution is introduced and nonparametric methods such as goodness-of-fit tests are presented. Further references are given for exploring related topics such as correlation and regression.