982 resultados para Canker (Plant disease)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulmus minor es una especie arbórea originaria de Europa cuyas poblaciones han sido diezmadas por el hongo patógeno causante de la enfermedad de la grafiosis. La conservación de los olmos exige plantearse su propagación a través de plantaciones y conocer mejor su ecología y biología. Ulmus minor es un árbol de ribera, pero frecuentemente se encuentra alejado del cauce de arroyos y ríos, donde la capa freática sufre fuertes oscilaciones. Por ello, nuestra hipótesis general es que esta especie es moderadamente resistente tanto a la inundación como a la sequía. El principal objetivo de esta tesis doctoral es entender desde un punto de vista funcional la respuesta de U. minor a la inundación, la sequía y la infección por O. novo-ulmi; los factores que posiblemente más influyen en la distribución actual de U. minor. Con este objetivo se persigue dar continuidad a los esfuerzos de conservación de esta especie que desde hace años se dedican en varios centros de investigación a nivel mundial, ya que, entender mejor los mecanismos que contribuyen a la resistencia de U. minor ante la inoculación con O. novo-ulmi y factores de estrés abiótico ayudará en la selección y propagación de genotipos resistentes a la grafiosis. Se han planteado tres experimentos en este sentido. Primero, se ha comparado la tolerancia de brinzales de U. minor y U. laevis – otro olmo ibérico – a una inmersión controlada con el fin de evaluar su tolerancia a la inundación y comprender los mecanismos de aclimatación. Segundo, se ha comparado la tolerancia de brinzales de U. minor y Quercus ilex – una especie típica de ambientes Mediterránea secos – a la falta de agua en el suelo con el fin de evaluar el grado de tolerancia y los mecanismos de aclimatación a la sequía. El hecho de comparar dos especies contrastadas responde al interés en entender mejor cuales son los procesos que conducen a la muerte de una planta en condiciones de sequía – asunto sobre el que hay una interesante discusión desde hace algunos años. En tercer lugar, con el fin de entender mejor la resistencia de algunos genotipos de U. minor a la grafiosis, se han estudiado las diferencias fisiológicas y químicas constitutivas e inducidas por O. novo-ulmi entre clones de U. minor seleccionados a priori por su variable grado de resistencia a esta enfermedad. En el primer experimento se observó que los brinzales de U. minor sobrevivieron 60 días inmersos en una piscina con agua no estancada hasta una altura de 2-3 cm por encima del cuello de la raíz. A los 60 días, los brinzales de U. laevis se sacaron de la piscina y, a lo largo de las siguientes semanas, fueron capaces de recuperar las funciones fisiológicas que habían sido alteradas anteriormente. La conductividad hidráulica de las raíces y la tasa de asimilación de CO2 neta disminuyeron en ambas especies. Por el contrario, la tasa de respiración de hojas, tallos y raíces aumentó en las primeras semanas de la inundación, posiblemente en relación al aumento de energía necesario para desarrollar mecanismos de aclimatación a la inundación, como la hipertrofia de las lenticelas que se observó en ambas especies. Por ello, el desequilibrio del balance de carbono de la planta podría ser un factor relevante en la mortalidad de las plantas ante inundaciones prolongadas. Las plantas de U. minor (cultivadas en envases de 16 litros a media sombra) sobrevivieron por un prolongado periodo de tiempo en verano sin riego; la mitad de las plantas murieron tras 90 días sin riego. El cierre de los estomas y la pérdida de hojas contribuyeron a ralentizar las pérdidas de agua y tolerar la sequía en U. minor. Las obvias diferencias en tolerancia a la sequía con respecto a Q. ilex se reflejaron en la distinta capacidad para ralentizar la aparición del estrés hídrico tras dejar de regar y para transportar agua en condiciones de elevada tensión en el xilema. Más relevante es que las plantas con evidentes síntomas de decaimiento previo a su muerte exhibieron pérdidas de conductividad hidráulica en las raíces del 80% en ambas especies, mientras que las reservas de carbohidratos apenas variaron y lo hicieron de forma desigual en ambas especies. Árboles de U. minor de 5 y 6 años de edad (plantados en eras con riego mantenido) exhibieron una respuesta a la inoculación con O. novo-ulmi consistente con ensayos previos de resistencia. La conductividad hidráulica del tallo, el potencial hídrico foliar y la tasa de asimilación de CO2 neta disminuyeron significativamente en relación a árboles inoculados con agua, pero solo en los clones susceptibles. Este hecho enlaza con el perfil químico “más defensivo” de los clones resistentes, es decir, con los mayores niveles de suberina, ácidos grasos y compuestos fenólicos en estos clones que en los susceptibles. Ello podría restringir la propagación del hongo en el árbol y preservar el comportamiento fisiológico de los clones resistentes al inocularlos con el patógeno. Los datos indican una respuesta fisiológica común de U. minor a la inundación, la sequía y la infección por O. novo-ulmi: pérdida de conductividad hidráulica, estrés hídrico y pérdida de ganancia neta de carbono. Pese a ello, U. minor desarrolla varios mecanismos que le confieren una capacidad moderada para vivir en suelos temporalmente anegados o secos. Por otro lado, el perfil químico es un factor relevante en la resistencia de ciertos genotipos a la grafiosis. Futuros estudios deberían examinar como este perfil químico y la resistencia a la grafiosis se ven alteradas por el estrés abiótico. ABSTRACT Ulmus minor is a native European elm species whose populations have been decimated by the Dutch elm disease (DED). An active conservation of this species requires large-scale plantations and a better understanding of its biology and ecology. U. minor generally grows close to water channels. However, of the Iberian riparian tree species, U. minor is the one that spread farther away from rivers and streams. For these reasons, we hypothesize that this species is moderately tolerant to both flooding and drought stresses. The main aim of the present PhD thesis is to better understand the functional response of U. minor to the abiotic stresses – flooding and drought – and the biotic stress – DED – that can be most influential on its distribution. The overarching goal is to aid in the conservation of this emblematic species through a better understanding of the mechanisms that contribute to resistance to abiotic and biotic stresses; an information that can help in the selection of resistant genotypes and their expansion in large-scale plantations. To this end, three experiments were set up. First, we compared the tolerance to experimental immersion between seedlings of U. minor and U. laevis – another European riparian elm species – in order to assess their degree of tolerance and understand the mechanisms of acclimation to this stress. Second, we investigated the tolerance to drought of U. minor seedlings in comparison with Quercus ilex (an oak species typical of dry Mediterranean habitats). Besides assessing and understanding U. minor tolerance to drought at the seedling stage, the aim was to shed light into the functional alterations that trigger drought-induced plant mortality – a matter of controversy in the last years. Third, we studied constitutive and induced physiological and biochemical differences among clones of variable DED resistance, before and following inoculation with Ophiostoma novo-ulmi. The goal is to shed light into the factors of DED resistance that is evident in some genotypes of U. minor, but not others. Potted seedlings of U. minor survived for 60 days immersed in a pool with running water to approximately 2-3 cm above the stem collar. By this time, U. minor seedlings died, whereas U. laevis seedlings moved out of the pool were able to recover most physiological functions that had been altered by flooding. For example, root hydraulic conductivity and leaf photosynthetic CO2 uptake decreased in both species; while respiration initially increased with flooding in leaves, stems and roots possibly to respond to energy demands associated to mechanisms of acclimation to soil oxygen deficiency; as example, a remarkable hypertrophy of lenticels was soon observed in flooded seedlings of both species. Therefore, the inability to maintain a positive carbon balance somehow compromises seedling survival under flooding, earlier in U. minor than U. laevis, partly explaining their differential habitats. Potted seedlings of U. minor survived for a remarkable long time without irrigation – half of plants dying only after 90 days of no irrigation in conditions of high vapour pressure deficit typical of summer. Some mechanisms that contributed to tolerate drought were leaf shedding and stomata closure, which reduced water loss and the risk of xylem cavitation. Obviously, U. minor was less tolerant to drought than Q. ilex, differences in drought tolerance resulting mostly from the distinct capacity to postpone water stress and conduct water under high xylem tension among species. More relevant was that plants of both species exhibited similar symptoms of root hydraulic failure (i.e. approximately 80% loss of hydraulic conductivity), but a slight and variable depletion of non-structural carbohydrate reserves preceding dieback. Five- and six-year-old trees of U. minor (planted in the field with supplementary watering) belonging to clones of contrasted susceptibility to DED exhibited a different physiological response to inoculation with O. novo-ulmi. Stem hydraulic conductivity, leaf water potential and photosynthetic CO2 uptake decreased significantly relative to control trees inoculated with water only in DED susceptible clones. This is consistent with the “more defensive” chemical profile observed in resistant clones, i.e. with higher levels of saturated hydrocarbons (suberin and fatty acids) and phenolic compounds than in susceptible clones. These compounds could restrict the spread of O. novo-ulmi and contribute to preserving the near-normal physiological function of resistant trees when exposed to the pathogen. These results evidence common physiological responses of U. minor to flooding, drought and pathogen infection leading to xylem water disruption, leaf water stress and reduced net carbon gain. Still, seedlings of U. minor develop various mechanisms of acclimation to abiotic stresses that can play a role in surviving moderate periods of flood and drought. The chemical profile appears to be an important factor for the resistance of some genotypes of U. minor to DED. How abiotic stresses such as flooding and drought affect the capacity of resistant U. minor clones to face O. novo-ulmi is a key question that must be contemplated in future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La cancrosis o chancro bacteriano de los cítricos (CBC) causada por Xanthomonas citri subsp. citri (Xcc) y X. fuscans subsp. aurantifolii, afecta a un gran número de especies dentro de la familia de las rutáceas, especialmente cítricos. Esta enfermedad produce graves pérdidas económicas allí donde está presente, principalmente porque la comercialización de cítricos desde las zonas afectadas hacía zonas libres de cancrosis, está sujeta a fuertes medidas cuarentenarias. La cancrosis se encuentra distribuida a nivel mundial pero no se ha localizado ni en la Unión Europea ni en ningún área del Mediterráneo. Se han descrito tres tipos de cancrosis en función de la gama de huésped y de las características fenotípicas y genotípicas de las bacterias que las producen. La más extendida es la cancrosis tipo A producida por Xcc, dentro de la cual se distinguen los subtipos Aw y A*, originarios de Florida y Sudeste Asiático, respectivamente, que de forma natural solo son capaces de producir enfermedad en lima mejicana. En este trabajo se presentan estudios sobre mecanismos implicados en las primeras etapas de la infección, como la quimiotaxis y formación de biopelículas, en la cancrosis de los cítricos. La quimiotaxis es el proceso por el cual las bacterias se dirigen hacia zonas favorables para su supervivencia y desarrollo. Los perfiles quimiotácticos obtenidos frente a distintas fuentes de carbono, así como los estudios en relación al contenido de proteínas aceptoras de grupos metilo (MCPs), permitieron agrupar a las cepas de Xanthomonas estudiadas en este trabajo, de acuerdo a la enfermedad producida y a su gama de huésped. Todas las cepas mostraron quimiotaxis positiva frente a extractos de hoja y apoplasto de diferentes especies, sin embargo, Xcc 306, X. alfalfae subsp. citrumelonis (Xac) y X. campestris pv. campestris (Xc) manifestaron respuestas más específicas frente a extractos de apoplasto de hojas de naranjo dulce, lima y col china, respectivamente. Dicho resultado nos permite asociar el mecanismo de quimiotaxis con la capacidad de las cepas de Xanthomonas para colonizar estos huéspedes de forma específica. Las cepas estudiadas fueron capaces de realizar movimiento tipo swimming, twitching y sliding en distintos medios, siendo el movimiento swimming el único en el que se encontraron diferencias entre las cepas de Xcc con distinta gama de huésped. En este trabajo se ha estudiado además la formación de biopelículas en superficies bióticas y abióticas, un mecanismo importante tanto para la supervivencia en superficie vegetal como para el desarrollo de la infección. Las cepas de Xanthomonas estudiadas fueron capaces de formar biopelículas in vitro, siendo mayor en un medio que simula el apoplasto y que contiene una baja concentración de nutrientes en comparación con medios que contenían alta concentración de nutrientes. La formación de biopelículas en superficie vegetal se encontró relacionada, en las cepas patógenas de cítricos, con la capacidad para infectar un tejido o huésped determinado. Se han caracterizado algunos de los componentes de la matriz extracelular producida por Xcc, que compone hasta un 90% de las bipoelículas. Entre ellos destaca el ADN extracelular, que tiene un papel como adhesina en las primeras etapas de formación de biopelículas y estructural en biopelículas maduras. Además, se han identificado el pilus tipo IV como componente importante en las biopelículas, que también participa en motilidad. Finalmente, se han realizado estudios sobre la expresión de genes implicados en motilidad bacteriana y formación de biopelículas que han confirmado las diferencias existentes entre cepas de Xcc de amplia y limitada gama de huésped, así como el papel que juegan elementos como el pilus tipo IV o el flagelo en estos procesos. ABSTRACT Xanthomonas citri subsp. citri (Xcc) and X. fuscans subsp. aurantifolii are the causal agents of Citrus Bacterial Canker (CBC) which is one of the most important citrus diseases. CBC affects all Citrus species as well as other species from Rutaceae family. CBC produces strong economic losses; furthermore the commercialization of plants and fruits is restricted from infested to citrus canker free areas. The disease is worldwide distributed in tropical and subtropical areas, however it is not present in the European Union. Three types of CBC have been described according to the host range and phenotypic and genotypic characteristics. CBC type A caused by Xcc is he widest distributed. Within CBC A type two subtypes Aw and A* were described from Florida and Iran respectively, both infecting only Mexican lime. Herein mechanisms connected to early events in the citrus bacterial canker disease such as chemotaxis and biofilm formation, were studied. Chemotaxis allows bacteria to move towards the more suitable environments for its survival, host colonization and infection. Studies performed on citrus pathogenic Xanthomonas and X. campestris pv. campestris (Xc), a crucifer pathogen, have shown different chemotactic profiles towards carbon compound as well as different MCPs profile, which clustered strains according to host range and disease caused. Every strain showed positive chemotaxis toward leaf extracts and apoplastic fluids from sweet orange, Mexican lime and Chinese cabbage leaves. However, a more specific response was found for strains Xcc 306, X. alfalfae subsp. citrumelonis and Xc towards sweet orange, Mexican lime and Chinese cabbage apoplastic fluids, respectively. These results relate chemotaxis with the higher ability of those strains to specifically colonize their proper host. Xanthomonas strains studied were able to perform swimming, sliding and twitching motilities. The ability to swim was variable among CBC strains and seemed related to host range. Biofilm formation is an important virulence factor for Xcc because it allows a better survival onto the plant surface as well as facilitates the infection process. The studied Xanthomonas strains were able to form biofilm in vitro, on both nutrient rich and apoplast mimicking media, furthermore the biofilm formation by all the strains was higher in the apoplast mimicking media. The ability to form biofilm in planta by Xcc and Xac strains was dependent of the host and the tissue colonized. The wide host range CBC strain was able to form biofilm onto several citrus leaves and fruits, however the limited host range CBC strain produced biofilm solely onto Mexican lime leaves and fruits. Furthermore Xac strain, which solely infects leaves of young plants, was not able to develop biofilms on fruits. Some components of the extracellular matrix produced by Xcc strains have been characterized. Extracellular DNA acted as an adhesin at the very early stages of biofilm formation and as structural component of mature biofilm for citrus pathogenic Xanthomonas. Furthermore type IV pilus has been identified as a component of the extracellular matrix in biofilm and motility. Transcriptional studies of genes related with biofilm formation and motility have confirmed the differential behavior found among wide and limited host range CBC strains as well as the role of type IV pili and flagellum on those processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saponins are glycosylated plant secondary metabolites found in many major food crops [Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987) CRC Crit. Rev. Food Sci. Nutr. 26, 27–133]. Because many saponins have potent antifungal properties and are present in healthy plants in high concentrations, these molecules may act as preformed chemical barriers to fungal attack. The isolation of plant mutants defective in saponin biosynthesis represents a powerful strategy for evaluating the importance of these compounds in plant defense. The oat root saponin avenacin A-1 fluoresces under ultraviolet illumination [Crombie, L., Crombie, W. M. L. & Whiting, D. A. (1986) J. Chem. Soc. Perkins 1, 1917–1922], a property that is extremely rare among saponins. Here we have exploited this fluorescence to isolate saponin-deficient (sad) mutants of a diploid oat species, Avena strigosa. These sad mutants are compromised in their resistance to a variety of fungal pathogens, and a number of lines of evidence suggest that this compromised disease resistance is a direct consequence of saponin deficiency. Because saponins are widespread throughout the plant kingdom, this group of secondary metabolites may have general significance as antimicrobial phytoprotectants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants commonly respond to pathogen infection by increasing ethylene production, but it is not clear if this ethylene does more to promote disease susceptibility or disease resistance. Ethylene production and/or responsiveness can be altered by genetic manipulation. The present study used mutagenesis to identify soybean (Glycine max L. Merr.) lines with reduced sensitivity to ethylene. Two new genetic loci were identified, Etr1 and Etr2. Mutants were compared with isogenic wild-type parents for their response to different soybean pathogens. Plant lines with reduced ethylene sensitivity developed similar or less-severe disease symptoms in response to virulent Pseudomonas syringae pv glycinea and Phytophthora sojae, but some of the mutants developed similar or more-severe symptoms in response to Septoria glycines and Rhizoctonia solani. Gene-for-gene resistance against P. syringae expressing avrRpt2 remained effective, but Rps1-k-mediated resistance against P. sojae races 4 and 7 was disrupted in the strong ethylene-insensitive etr1-1 mutant. Rps1-k-mediated resistance against P. sojae race 1 remained effective, suggesting that the Rps1-k locus may encode more than one gene for disease resistance. Overall, our results suggest that reduced ethylene sensitivity can be beneficial against some pathogens but deleterious to resistance against other pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants contain RNA-dependent RNA polymerase (RdRP) activities that synthesize short cRNAs by using cellular or viral RNAs as templates. During studies of salicylic acid (SA)-induced resistance to viral pathogens, we recently found that the activity of a tobacco RdRP was increased in virus-infected or SA-treated plants. Biologically active SA analogs capable of activating plant defense response also induced the RdRP activity, whereas biologically inactive analogs did not. A tobacco RdRP gene, NtRDRP1, was isolated and found to be induced both by virus infection and by treatment with SA or its biologically active analogs. Tobacco lines deficient in the inducible RDRP activity were obtained by expressing antisense RNA for the NtRDRP1 gene in transgenic plants. When infected by tobacco mosaic virus, these transgenic plants accumulated significantly higher levels of viral RNA and developed more severe disease symptoms than wild-type plants. After infection by a strain of potato virus X that does not spread in wild-type tobacco plants, the transgenic NtRDRP1 antisense plants accumulated virus and developed symptoms not only locally in inoculated leaves but also systemically in upper uninoculated leaves. These results strongly suggest that inducible RdRP activity plays an important role in plant antiviral defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for ≈80% of developing countries’ cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world’s fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the “Green Revolution” and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world’s expanding demand for food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant–pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host–cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant–pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have isolated an Arabidopsis thaliana gene that codes for a receptor related to antifungal pathogenesis-related (PR) proteins. The PR5K gene codes for a predicted 665-amino acid polypeptide that comprises an extracellular domain related to the PR5 proteins, a central transmembrane-spanning domain, and an intracellular protein-serine/threonine kinase. The extracellular domain of PR5K (PR5-like receptor kinase) is most highly related to acidic PR5 proteins that accumulate in the extracellular spaces of plants challenged with pathogenic microorganisms. The kinase domain of PR5K is related to a family of protein-serine/threonine kinases that are involved in the expression of self-incompatibility and disease resistance. PR5K transcripts accumulate at low levels in all tissues examined, although particularly high levels are present in roots and inflorescence stems. Treatments that induce authentic PR5 proteins had no effect on the level of PR5K transcripts, suggesting that the receptor forms part of a preexisting surveillance system. When the kinase domain of PR5K was expressed in Escherichia coli, the resulting polypeptide underwent autophosphorylation, consistent with its predicted enzyme activity. These results are consistent with PR5K encoding a functional receptor kinase. Moreover, the structural similarity between the extracellular domain of PR5K and the antimicrobial PR5- proteins suggests a possible interaction with common or related microbial targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2,6-Dichloroisonicotinic acid (INA) and salicylic acid (SA) are potent inducers of plant defense responses including the synthesis of pathogenesis-related (PR) proteins and the development of enhanced disease resistance. A soluble SA-binding protein has been purified from tobacco with an affinity and specificity of binding that suggest it is a SA receptor. Recently, this protein has been shown to be a catalase whose enzymatic activity is inhibited by SA binding. We have proposed that the resulting increase in intracellular levels of reactive oxygen species plays a role in the induction of defense responses such as PR protein gene expression. Here we report that INA, like SA, binds the SA-binding protein/catalase and inhibits its enzymatic activity. In fact, the dose-response curves for inhibition of catalase by these two compounds are similar. Furthermore, the ability of both INA analogues and SA derivatives to bind and inhibit tobacco catalase correlates with their biological activity to induce PR-1 gene expression and enhance resistance to tobacco mosaic virus. Comparison of the structures of INA, SA, and their analogues reveals several common features that appear to be important for biological activity. Thus, these results not only suggest that INA and SA share the same mechanism of action that involves binding and inhibition of catalase but also further indicate an important role for reactive oxygen species in the induction of certain plant defense responses. This is supported by the demonstration that INA-mediated PR-1 gene activation is suppressed by antioxidants.