1000 resultados para Calculated, see reference(s)
Resumo:
Bacterial abundance, bacterial secondary production (BSP) and potential ectoproteolytic activity (PEA) were measured at 6 stations along the Strait of Magellan, South America, toward the end of summer 1995. Because of hydrological and climatic factors, 3 main areas could be identified in which the bacterial component displayed specific characteristics. In the Pacific Ocean side, subjected to freshwater inputs from rainfalls and melting of glaciers, the bacterial activities showed the highest values (BSP: 228.2 ng C/l h; PEA: 12.2 nmol/l h). The bacterial biomass was greater than the phytoplanktonic biomass, probably due to organic inputs from land stimulating the bacterial growth. The central part of the Strait demonstrated the lowest values (BSP: 32.6 ng C/l h, PEA: 4.6 nmol/l h), although the ratio of bacterial biomass to phytoplanktonic biomass was greater than 1. In the third area, the Atlantic Ocean opening, subjected to strong tidal currents, BSP and PEA displayed high values, 80 to 88.7 ng C/l h and 11.7 nmol/l h respectively. Nevertheless, the ratio of bacterial to phytoplanktonic biomass was less than 1, like in eutrophic areas. On the other hand, no impact of the tide was noted on bacterial parameters. Considering all samples measured in the 0 to 50 m layer, although BSP and PEA were positively correlated with bacterial abundance, the PEA to BSP ratio was negatively correlated with the bacterial biomass (r = -0.72, p < 0.001, n = 22). This ratio could be an indicator of trophic conditions in the 3 subsystems of the Strait.
Resumo:
We infer variations in paleoproductivity and eolian input at ODP Site 1082 in the Walvis Basin from stable oxygen isotope compositions of the planktonic foraminifera Globorotalia inflata, total organic carbon mass accumulation rates (TOC MAR), and X-ray fluorescence analyses of Fe content. The most pronounced paleoclimatic changes correspond to the time at about 0.9 Ma, when glacial conditions in the northern hemisphere (NH) led to the onset of pronounced 100-kyr glacial-interglacial cycles. We used Fe intensity as a proxy for eolian terrigenous input, and TOC MAR as a paleoproductivity indicator. Paleoproductivity and eolian input show generally higher-amplitude variations of glacial-interglacial cyclicity from 1.5 to 0.58 Ma, indicating pronounced variations in upwellingfavorable winds in this area. At 0.58 Ma, paleoproductivity and eolian input shifted abruptly to lower-amplitude variations with a periodicity of 100 kyr while delta18O values show a trend toward more negative isotope values for the past 0.65 Myr. Especially during glacial periods, oxygen isotope values indicate increasingly warmer sea-surface temperatures toward the end of the Pleistocene. To evaluate the relative influences of NH glaciation and southern hemisphere (SH) insolation as potential forcing mechanisms for variations of eolian input and productivity in the northern Benguela system, we filtered our proxy records at orbital frequencies. The filtered records of Fe intensity and TOC MAR indicate a strong influence of the 100-kyr and 41-kyr frequency bands, supporting our assumption that strong ice buildup in the NH is the dominant trigger for climate changes on the continent and probably in trade-wind intensity. SH insolation and low-latitude precession-related insolation changes were important for paleoproductivity variations in the northern Benguela system, modifying the nutrient supply by southern ocean intermediate waters and the zonal direction of upwelling-inducing trades by the African monsoon system, respectively.
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
The amount and the accumulation rate of quartz were measured in 33 samples from Hole 576A. The amount and source of mineral aerosol being deposited in the northwest Pacific during the Cenozoic are evaluated using these data. When Hole 576A is compared to a Cenozoic record in the central North Pacific, a strong uniformity in the composition of the mineral aerosol across the North Pacific is seen. The data suggest that Hole 576A entered the influence of the westerlies about 15 m.y. ago and that since that time the rates of sediment deposition have increased. Only the dramatic change in quartz accumulation 2.5 m.y. ago can be clearly related to a climatic event, but a gradual increase in quartz accumulation through the Miocene and early Pliocene is probably a result of increasing Northern Hemisphere aridity and intensified atmospheric activity associated with global cooling during the interval.
Resumo:
The mass-accumulation rate (MAR) of the non-authigenic, inorganic, crystalline component of deep-sea sediments from the Pacific aseismic rises apparently reflects influx of eolian sediment. The eolian sediment usually is dominated by volcanic material, except during glacial times. Sediments from Hess Rise provide a discontinuous record of eolian MARs. During Albian to Cenomanian time, the influx of volcanic material was fairly high (0.35-0.6 g/cm**2/10**3 yr), recording the latest stages of the Albian volcanism that formed Hess Rise. From the Campanian through the Paleocene, influx of eolian sediment was low, averaging 0.03 g/cm**2/10**3 yr. None of the four Hess Rise drill sites show evidence of the Late Cretaceous volcanic episode recorded at many sites now in the equatorial to subtropical Pacific. Pliocene to Pleistocene samples record a peak in volcanic influx about 4 to 5 m.y. ago, which has been well documented elsewhere. The several-fold increase in eolian accumulation rates elsewhere which are correlated with the onset of severe northernhemisphere glaciation 2.5 m.y. ago is not obvious in the Hess Rise data.
Resumo:
Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.