972 resultados para Cadmium plating
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The development of cobalt molybdenum and cobalt tungsten brush plating electrolytes is described. Their optimum compositions and operating conditions for commercial applications have been determined. The effects of composition, pH, applied voltage, stylus speed and pressure upon deposit composition and efficiency have been investigated. Transmission and Scanning Electron Microscopy have been employed to study the cobalt alloy deposits produced. Evaluation of the wear resistant properties of the cobalt alloys developed in this work was carried out in the laboratory using a pin and disc technique and a simulated hot forging test, and by industrial trials involving the "on site" plating of hot forging dies and cold pressing tools. It was concluded that the electrolytes developed in tl1is work enabled cobalt alloys containing 6% Mo or 8% W to be deposited at 17-20V. Brush plated cobalt deposits possessed a mixed CPU and FCC crystallographic structure at room temperature. The application of 13µm of either of the cobalt alloys resulted in improved wear performance in both pin and disc and simulated hot forging tests. The results of the industrial trials indicated that by the use of these alloys, the life of hot forging dies may be increased by 20-100%. A commercial forging organisation is using electrolytes developed in this work to coat dies prior to forging nimonic alloys. Reductions in forging temperature and improved forging qualities have been reported. Cold pressing tools coated with the alloys showed a reduced tendency to "pick-up" and scoring of the pressed panels. Reports of a reduced need for lubrication of panels before pressing have also been received.
Resumo:
Under ideal conditions ion plating produces finely grained dense coatings with excellent adhesion. The ion bombardment induced damage initiates a large number of small nuclei. Simultaneous coating and sputtering stimulates high rates of diffusion and forms an interfacial region of graded composition responsible for good adhesion. To obtain such coatings on components far industrial applications, the design and construction Of an ion plater with a 24" (O.6rn) diameter chamber were investigated and modifications of the electron beam gun were proposed. A 12" (O.3m) diameter ion plater was designed and constructed. The equipment was used to develop surfaces for solar energy applications. The conditions to give extended surfaces by sputter etching were studied. Austenitic stainless steel was sputter etched at 20 and 30 mTorr working pressure and at 3, 4 and 5 kV. Uniform etching was achieved by redesigning the specimen holder to give a uniform electrostatic field over the surfaces of the specimens. Surface protrusions were observed after sputter etching. They were caused by the sputter process and were independent of grain boundaries, surface contaminants and inclusions. The sputtering rate of stainless steel was highly dependent on the background pressure which should be kept below 10-5 Torr. Sputter etching improved the performance of stainless steel used as a solar selective surface. A twofold improvement was achieved on sputter etching bright annealed stainless steel. However, there was only slight improvement after sputter etching stainless steel which had been mechanically polished to a mirror finish. Cooling curves Were used to measure the thermal emittance of specimens.The deposition rate of copper was measured at different levels of power input and was found to be a maximum at 9.5 kW. The diameter of the copper feed rod was found to be critical for the maintenance of a uniform evaporation rate.
Resumo:
Cadmium has been widely used in various industries for the past fifty years, with current world production standing at around 16,755 tonnes per year. Very little cadmium is ever recycled and the ultimate fate of all cadmium is the environment. In view of reports that cadmium in the environment is increasing, this thesis aims to identify population groups 'at risk' of receiving dietary intakes of cadmium up to or above the current Food and Agricultural Organisation/World Health Organisation maximum tolerable intake of 70 ug/day. The study involves the investigation of one hundred households (260 individuals) who grow a large proportion of their vegetable diet in garden soils in the Borough of Walsall, part of an urban/industrial area in the United Kingdom. Measurements were made of the cadmium levels in atmospheric deposition, soil, house dust, diet and urine from the participants. Atmospheric deposition of cadmium was found to be comparable with other urban/industrial areas in the European Community, with deposition rates as high as 209 g ha-1 yr-1. The garden soils of the study households were found to contain up to 33 mg kg-1 total cadmium, eleven times the highest level usually found in agricultural soils. Dietary intakes of cadmium by the residents from food were calculated to be as high as 68 ug/day. It is suggested that with intakes from other sources, such as air, adventitious ingestion, smoking and occupational exposure, total intakes of cadmium may reach or exceed the FAO/WHO limit. Urinary excretion of cadmium amongst a non-smoking, non-occupationally exposed sub-group of the study population was found to be significantly higher than that of a similar urban population who did not rely on home-produced vegetables. The results from this research indicate that present levels of cadmium in urban/industrial areas can increase dietary intakes and body burdens of cadmium. As cadmium serves no useful biological function and has been found to be highly toxic, it is recommended that policy measures to reduce human exposure on the European scale be considered.
Resumo:
Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.
Resumo:
This article is protected by copyright. All rights reserved.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show strong meridional Cd isotope and concentration gradients modulated by the Antarctic Fronts, with a clear biogeochemical divide located near 56°S. The coincidence of the Cd isotope divide with the Southern Boundary of the Antarctic Circumpolar Current (ACC),together with evidence for northward advection of the Cd signal in the ACC, demonstrate that Cd isotopes trace surface ocean circulation regimes. The relationships between Cd isotope ratios and concentrations display two negative correlations, separating the ACC and Weddell Gyre into two distinct Cd isoscapes. These arrays are consistent with Rayleigh fractionation and imply a doubling of the isotope effect due to biological consumption of Cd during water transport from the Weddell Gyre into the ACC. The increase in magnitude of Cd isotope fractionation can be accounted for by differences in the phytoplankton biomass, community composition, and their physiological uptake mechanisms in the Weddell Gyre and ACC, thus linking Cd isotope fractionation to primary production and the global carbon cycle.
Resumo:
There has been a major contradiction between benthic foraminiferal Cd/Ca and d13C data concerning the labile nutrient chemistry of the Southern Ocean during the Last Glacial Maximum (LGM). Cd data indicates that LGM South Atlantic nutrient concentrations were as low as they are today, indicative of a persistent influx of nutrient-depleted North Atlantic Deep Water (NADW). d13C data indicates that LGM South Atlantic nutrient concentrations were much higher than at present (even higher than anywhere else in the ocean at that time), and these data have been interpreted as signifying the complete shutdown ofthe export of NADW into the global ocean. This paper examines both true geochemical differences and various confounding foraminiferal artifacts for both tracers. While many different processes and artifacts affect both tracers in the margin, we conclude the discrepancy is mainly due to the "Mackensen Effect" of low foraminiferal d13C as a result of high carbon flux to the sediments, and that LGM Atlantic Sector Southern Ocean nutrient concentrations remained similar to the levels encountered today.
Resumo:
The general purpose of this study is to investigate the degree of heavy metal accumulation in hard and soft tissue of sea urchin, and determining these tissues as the most suitable bioindicator for lead and cadmium in the environment of the sampling stations. The way of doing this assessment was MOOPAM. Samples were prepared and classified according to sea urchin organ (soft tissue, hard tissue, Tube feet, Test, Lantern Structure and spines) and then lead and cadmium were measured in them. Result of this study shows that hard tissue is a better index of lead and cadmium than soft tissue. The result of bioaccumulation of lead in the related tissue was found to be in the following order: Soft tissue=21, hard tissue=28.1, Test=20.8, Lantern Structure=20.5 and spines=23.9. The result of bioaccumulation of cadmium in the related tissue was found to be in the following order: Soft tissue=9. 7, hard tissue=5.01, Test=4.2, Lantern Structure=4.06 and spines=5.53.
Resumo:
The phytoextraction process implies the use of plants to promote the elimination of metal contaminants in the soil. In fact, metal-accumulating plants are planted or transplanted in metal-contaminated soil and cultivated in accordance with established agricultural practices. The objective of the present study was to evaluate the productivity and Cd phytoextraction capacity of white lupine ( Lupinus albus L.) and narrow-leafed lupine ( Lupinus angustifolius L.), as well as the effect on residual Cd concentration in the soil. Both species of lupines were grown at three CdCl2 rates (0, 1, and 2 mg kg-1), under three agroclimatic conditions in Chile in 2013. In the arid zone (Pan de Azúcar, 73 mm precipitation), narrow-leafed lupine production was significantly (P < 0.05) higher than white lupine (4.55 vs. 3.26 Mg DM ha-1, respectively). In locations with higher precipitation (Santa Rosa, 670 mm; Carillanca, 880 mm), narrow-leafed lupine DM production was slightly higher than in Pan de Azúcar, but white lupine was approximately three times higher. Total plant Cd concentrations in white and narrow-leafed lupine increased as Cd rates increased in the three environments, but they were much higher in narrow-leafed lupine than white lupine; 150%, 58%, and 344% higher in Pan de Azúcar, Santa Rosa, and Carillanca, respectively. Cadmium uptake (g Cd ha-1) and apparent recovery were also higher (P < 0.05) in narrow-leafed lupine in two environments (Pan de Azúcar and Carillanca). These results suggest that narrow-leafed lupine present higher potential as phytoremediation species than white lupine.