994 resultados para Ca2 -deficient Photosystem II
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E-max= 31.3+/-4.8% compared to 9.25 mM Ca2+; n = 9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca2+; n= 3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.
Resumo:
El Estrés de Retículo Endoplásmico (RE) es inducido por la acumulación de proteínas sin plegar en el lumen de la organela. Esto se puede observar en diversas situaciones fisio-patológicas como durante una infección viral o en proceso isquémico. Además, contribuye a la base molecular de numerosas enfermedades ya sea índole metabólico (Fibrosis quística o Diabetes Miellitus) o neurodegenerativas como mal de Alzheimer o Parkinson (Mutat Res, 2005, 569). Para restablecer la homeostasis en la organela se activa una señal de transducción (UPR), cuya respuesta inmediata es la atenuación de la síntesis de proteína debido a la fosforilación de subunidad alpha del factor eucariótico de iniciación de translación (eIF2α) vía PERK. Esta es una proteína de membrana de RE que detecta estrés. Bajo condiciones normales, PERK está inactiva debido a la asociación de su dominio luminar con la chaperona BIP (Nat Cell Biol, 2000, 2: 326). Frente a una situación de estrés, la chaperona se disocia causando desinhibición. Recientemente, (Plos One 5: e11925) se observó, bajo condiciones de estrés, un aumento de Ca2+ citosólico y un rápido incremento de la expresión de calcineurina (CN), una fosfatasa citosólica dependiente de calcio, heterodimérica formada por una subunidad catalítica (CN-A) y una regulatoria (CN-B). Además, CN interacciona, sin intermediarios, con el dominio citosólico de PERK favoreciendo su trans-autofosforilación. Resultados preliminares indican que, astrocitos CNAβ-/- exhibieron, en condiciones basales, un mayor número de células muertas y de niveles de eIF2α fosforilado que los astrocitos CNAα-/-. Hipótesis: CNAβ/B interacciona con PERK cuando el Ca2+ citosólico esta incrementado luego de haberse inducido Estrés de RE, lo cual promueve dimerización y auto-fosforilación de la quinasa, acentuándose así la fosforilación de eIF2α e inhibición de la síntesis de proteínas. Esta activación citosólica de PERK colaboraría con la ya descrita, desinhibición luminal llevada cabo por BIP. Cuando el Ca2+ citosólico retorna a los niveles basales, PERK fosforila a CN, reduciendo su afinidad de unión y disociándose el complejo CN/PERK. Objetivo general: Definir las condiciones por las cuales CN interacciona con PERK y regula la fosforilación de eIF2α e inhibición de la síntesis de proteína. Objetivos específicos: I-Estudiar la diferencia de afinidades y dependencia de Ca2+, de las dos isoformas de CN (α y β) en su asociación con PERK. Además verificar la posible participación de la subunidad B de CN en esta interacción. II-Determinar si la auto-fosforilación de PERK es diferencialmente regulada por las dos isoformas de CN. III-Discernir la relación del estado de fosforilación de CN con su unión a PERK. IV-Determinar efectos fisiológicos de la interacción de CN-PERK durante la respuesta de Estrés de RE. Para llevar a cabo este proyecto se realizarán experimentos de biología molecular, interacción proteína-proteína, ensayos de fosforilación in vitro y un perfil de polisoma con astrocitos CNAβ-/- , CNA-/- y astrocitos controles. Se espera encontrar una mayor afinidad de unión a PERK de la isoforma β de CN y en condiciones donde la concentración de Ca2+ sea del orden micromolar e imite niveles del ión durante un estrés. Con respecto al estado de fosforilación de CN, debido a los resultados preliminares, donde solo se la encontró fosforilada en condiciones basales, se piensa que CN podría interactuar con mayor afinidad con PERK cuando CN se encuentre desfosforilada. Por último, se espera encontrar un aumento de eIF2α fosforilado y una acentuación de la atenuación de la síntesis de proteína como consecuencia de la mayor activación de PERK por su asociación con la isoforma β de CN en astrocitos donde el Estrés de RE se indujo por privación de oxigeno y glucosa. Estos experimentos permitirán avanzar en el estudio de una nueva función citoprotectora de CN recientemente descrita por nuestro grupo de trabajo y sus implicancias en un modelo de isquemia. The accumulation of unfolded proteins into the Endoplasmic Reticulum (ER) activates a signal transduction cascade called Unfolding Protein Response (UPR), which attempts to restore homeostasis in the organelle. (PKR)-like-ER kinase (PERK) is an early stress response transmembrane protein that is generally inactive due to its association with the chaperone BIP. During ER stress, BIP is tritrated by the unfolded protein, leading PERK activation and phosphorylation of eukaryotic initiation factor-2 alpha (eIF2alpha), which attenuates protein síntesis. If ER damage is too great and homeostasis is not restored within a certain period of time, an apoptotic response is elicited. We recently demonstrated a cytosolic Ca2+ increase in Xenopus oocytes after induce ER stress. Moreover, calcineurin A/B, a an heterotrimeric Ca2+ dependent phosphatases (CN-A/B), associates with PERK increasing its auto-phosphorylation and significantly enhancing cell viability. Preliminary results suggest that, CN-Aβ-/- knockout astrocytes exhibit a significant higher eIF2α phosphorylated level compared to CN-Aα-/- astrocytes. Our working hypothesis establishes that: CN binds to PERK when cytosolic Ca2+ is initially increased by ER stress, promoting dimerization and autophosphorylation, which leads to phosphorylation of elF2α and subsequently attenuation of protein translation. When cytosolic Ca2+ returns to resting levels, PERK phosphorylates CN, reducing its binding affinity so that the CN/PERK complex dissociates. The goal of this project is to determine the conditions by which CN binding to PERK attenuates protein translation during the ER stress response and subsequently, to determine how the interaction of CN with PERK is terminated when stress is removed. To perform this project is planed to do molecular biology experiments, pull down assays, in vitro phosphorylations and assess overall mRNA translation efficiency doing a polisome profile.
Resumo:
FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
CIITA is a master regulatory factor for the expression of MHC class II (MHC-II) and accessory genes involved in Ag presentation. It has recently been suggested that CIITA also regulates numerous other genes having diverse functions within and outside the immune system. To determine whether these genes are indeed relevant targets of CIITA in vivo, we studied their expression in CIITA-transgenic and CIITA-deficient mice. In contrast to the decisive control of MHC-II and related genes by CIITA, nine putative non-MHC target genes (Eif3s2, Kpna6, Tap1, Yars, Col1a2, Ctse, Ptprr, Tnfsf6 and Plxna1) were found to be CIITA independent in all cell types examined. Two other target genes, encoding IL-4 and IFN-gamma, were indeed found to be up- and down-regulated, respectively, in CIITA-transgenic CD4(+) T cells. However, there was no correlation between MHC-II expression and this Th2 bias at the level of individual transgenic T cells, indicating an indirect control by CIITA. These results show that MHC-II-restricted Ag presentation, and its indirect influences on T cells, remains the only pathway under direct control by CIITA in vivo. They also imply that precisely regulated MHC-II expression is essential for maintaining a proper Th1-Th2 balance.
Resumo:
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.
Resumo:
BACKGROUND Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. METHODS Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. RESULTS Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). CONCLUSION Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during childhood.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
No sistema de semeadura direta, o calcário tem sido aplicado superficialmente para evitar o revolvimento do solo. Os ânions adicionados via adubação nitrogenada podem aumentar a solubilização de sais de cátions básicos do solo graças à formação de pares iônicos. O objetivo deste trabalho foi estudar a dinâmica dos ânions NO3- e SO4(2-) e dos cátions NH4+, Ca2+, Mg2+ e K+ da solução do solo, bem como a absorção de nutrientes pelo algodoeiro submetido a distintas formas de aplicação de calcário e diferentes doses de sulfato de amônio em cobertura, cultivado com a presença de palha na superfície do solo. Utilizou-se um Latossolo Vermelho distroférrico de textura média que foi acomodado em vasos com 15,71 dm³. Plantas de algodão (Gossypium hirsutum) foram cultivadas por 60 dias nas condições de calagem superficial sobre a palha, calagem incorporada a 0-20 cm de profundidade e ausência de correção do solo, com a aplicação de doses de sulfato de amônio equivalentes a 0, 50, 100 e 150 kg ha-1 de N em cobertura. Cápsulas porosas foram instaladas para amostragem e quantificação de nutrientes da solução do solo. A concentração de SO4(2-) da solução do solo foi incrementada pela adubação nitrogenada, independentemente da forma de aplicação do calcário. A curto prazo, a nitrificação do NH4+ aplicado foi favorecida somente com a calagem incorporada, apesar de o N nítrico da solução do solo ter aumentado no final do cultivo do algodão até mesmo no solo não corrigido. As concentrações de Ca, Mg e K da solução do solo foram incrementadas pela adubação de cobertura. O ânion SO4(2-) apresentou maior afinidade do que o NO3- na formação de pares iônicos com os cátions básicos da solução do solo. A adubação nitrogenada proporcionou maior eficiência na absorção de Ca e Mg pelo algodoeiro na condição de calagem incorporada.
Promoter IV of the class II transactivator gene is essential for positive selection of CD4+ T cells.
Resumo:
Major histocompatibility complex class II (MHCII) expression is regulated by the transcriptional coactivator CIITA. Positive selection of CD4(+) T cells is abrogated in mice lacking one of the promoters (pIV) of the Mhc2ta gene. This is entirely due to the absence of MHCII expression in thymic epithelia, as demonstrated by bone marrow transfer experiments between wild-type and pIV(-/-) mice. Medullary thymic epithelial cells (mTECs) are also MHCII(-) in pIV(-/-) mice. Bone marrow-derived, professional antigen-presenting cells (APCs) retain normal MHCII expression in pIV(-/-) mice, including those believed to mediate negative selection in the thymic medulla. Endogenous retroviruses thus retain their ability to sustain negative selection of the residual CD4(+) thymocytes in pIV(-/-) mice. Interestingly, the passive acquisition of MHCII molecules by thymocytes is abrogated in pIV(-/-) mice. This identifies thymic epithelial cells as the source of this passive transfer. In peripheral lymphoid organs, the CD4(+) T-cell population of pIV(-/-) mice is quantitatively and qualitatively comparable to that of MHCII-deficient mice. It comprises a high proportion of CD1-restricted natural killer T cells, which results in a bias of the V beta repertoire of the residual CD4(+) T-cell population. We have also addressed the identity of the signal that sustains pIV expression in cortical epithelia. We found that the Jak/STAT pathways activated by the common gamma chain (CD132) or common beta chain (CDw131) cytokine receptors are not required for MHCII expression in thymic cortical epithelia.
Resumo:
Cx40-deficient mice (Cx40-/-) are hypertensive due to increased renin secretion. We evaluated the renal expression of neuronal nitric oxide synthase (nNOS) and cyclooxygenases COX-1 and COX-2, three macula densa enzymes. The levels of nNOS were increased in kidneys of Cx40-/- mice, as well as in those of wild-type (WT) mice subjected to the two-kidney one-clip model of hypertension. In contrast, the levels of COX-2 expression were only increased in the hypoperfused kidney of Cx40-/- mice. Treatment with indomethacin lowered blood pressure and renin mRNA in Cx40-/- mice without affecting renin levels, indicating that changes in COX-2 do not cause the altered secretion of renin. Suppression of NOS activity by N(G)-nitro-L-arginine methyl ester (L-NAME) decreased renin levels in Cx40-/- animals, indicating that NO regulates renin expression in the absence of Cx40. Treatment with candesartan normalized blood pressure in Cx40-/- mice, and decreased the levels of both COX-2 and nNOS. After a treatment combining candesartan and L-NAME, the blood pressure of Cx40-/- mice was higher than that of WT mice, showing that NO may counterbalance the vasoconstrictor effects of angiotensin II in Cx40-/- mice. These data document that renal COX-2 and nNOS are differentially regulated due to the elevation of renin-dependent blood pressure in mice lacking Cx40.
Resumo:
A wealth of literature has provided evidence that reactive tissue at the site of CNS injury is rich in chondroitin sulfate proteoglycans which may contribute to the non-permissive nature of the CNS. We have recently demonstrated using a murine model of human brachial plexus injury that the chondroitin sulfate proteoglycans Neurocan and Brevican are differentially expressed by two subsets of astrocytes in the spinal cord dorsal root entry zone (DREZ) following dorsal root lesion (Beggah et al., Neuroscience 133: 749-762, 2005). However, direct evidence for a growth-inhibitory role of these proteoglycans in vivo is still lacking. We therefore performed dorsal root lesion (rhizotomy) in mice deficient in both Neurocan and Brevican. Rhizotomy in these animals resulted in no significant increase in the number of sensory fibres regenerating through the DREZ compared to genetically matched controls. Likewise, a conditioning peripheral nerve lesion prior to rhizotomy, which increases the intrinsic growth capacity of sensory neurons, enhanced growth to the same extent in transgenic and control mice, indicating that absence of these proteoglycans alone is not sufficient to further promote entry into the spinal cord. In contrast, when priming of the median nerve was performed at a clinically relevant time, i.e. 7 weeks post-rhizotomy, the growth of a subpopulation of sensory axons across the DREZ was facilitated in Neurocan/Brevican-deficient, but not in control animals. This demonstrates for the first time that (i) Neurocan and/or Brevican contribute to the non-permissive environment of the DREZ several weeks after lesion and that (ii) delayed stimulation of the growth program of sensory neurons can facilitate regeneration across the DREZ provided its growth-inhibitory properties are attenuated. Post-injury enhancement of the intrinsic growth capacity of sensory neurons combined with removal of inhibitory chondroitin sulfate proteoglycans may therefore help to restore sensory function and thus attenuate the chronic pain resulting from human brachial plexus injury.