803 resultados para CONTINUUM GENERATION
Resumo:
[cat] En aquest treball es presenta un model eclèctic que sistematitza la dinàmica de les crisis que s’autoconfimen, usant els principals aspectes de les tres tipologies dels models de crisis canviàries de tercera generació, amb la finalitat de descriure els fets que precipiten la renúncia al manteniment d’una paritat fixada. Les contribucions més notables són les implicacions per a la política econòmica, així com la pèrdua del paper del tipus de canvi com instrument d’ajust macroeconòmic, quan els efectes de balanç són una possibilitat real.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
High-fidelity 'proofreading' polymerases are often used in library construction for next-generation sequencing projects, in an effort to minimize errors in the resulting sequence data. The increased template fidelity of these polymerases can come at the cost of reduced template specificity, and library preparation methods based on the AFLP technique may be particularly susceptible. Here, we compare AFLP profiles generated with standard Taq and two versions of a high-fidelity polymerase. We find that Taq produces fewer and brighter peaks than high-fidelity polymerase, suggesting that Taq performs better at selectively amplifying templates that exactly match the primer sequences. Because the higher accuracy of proofreading polymerases remains important for sequencing applications, we suggest that it may be more effective to use alternative library preparation methods.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
OBJECTIVE: To explore the user-friendliness and ergonomics of seven new generation intensive care ventilators. DESIGN: Prospective task-performing study. SETTING: Intensive care research laboratory, university hospital. METHODS: Ten physicians experienced in mechanical ventilation, but without prior knowledge of the ventilators, were asked to perform eight specific tasks [turning the ventilator on; recognizing mode and parameters; recognizing and setting alarms; mode change; finding and activating the pre-oxygenation function; pressure support setting; stand-by; finding and activating non-invasive ventilation (NIV) mode]. The time needed for each task was compared to a reference time (by trained physiotherapist familiar with the devices). A time >180 s was considered a task failure. RESULTS: For each of the tests on the ventilators, all physicians' times were significantly higher than the reference time (P < 0.001). A mean of 13 +/- 8 task failures (16%) was observed by the ventilator. The most frequently failed tasks were mode and parameter recognition, starting pressure support and finding the NIV mode. Least often failed tasks were turning on the pre-oxygenation function and alarm recognition and management. Overall, there was substantial heterogeneity between machines, some exhibiting better user-friendliness than others for certain tasks, but no ventilator was clearly better that the others on all points tested. CONCLUSIONS: The present study adds to the available literature outlining the ergonomic shortcomings of mechanical ventilators. These results suggest that closer ties between end-users and manufacturers should be promoted, at an early development phase of these machines, based on the scientific evaluation of the cognitive processes involved by users in the clinical setting.
Resumo:
Epistatic effects involving genic combinations of fixed and non fixed genes are shown to contribute to the genotypic mean of any population. These effects define specific additive x additive and additive x dominant epistatic components. As such components are not estimable, their relative importance cannot be assessed. These epistatic effects can cause bias in the estimates of the additive and dominance components to which they are confounded. The magnitude of the bias depends on the relative values of the epistatic effects, comparatively to deviations d and h, type of prevailing epistasis and direction of dominance.
Resumo:
The aim of this work was to design a novel strategy to detect new targets for anticancer treatments. The rationale was to build Biological Association Networks from differentially expressed genes in drug-resistant cells to identify important nodes within the Networks. These nodes may represent putative targets to attack in cancer therapy, as a way to destabilize the gene network developed by the resistant cells to escape from the drug pressure. As a model we used cells resistant to methotrexate (MTX), an inhibitor of DHFR. Selected node-genes were analyzed at the transcriptional level and from a genotypic point of view. In colon cancer cells, DHFR, the AKR1 family, PKC¿, S100A4, DKK1, and CAV1 were overexpressed while E-cadherin was lost. In breast cancer cells, the UGT1A family was overexpressed, whereas EEF1A1 was overexpressed in pancreatic cells. Interference RNAs directed against these targets sensitized cells towards MTX.
Resumo:
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Resumo:
In the past 5 years "Next-generation" Sequencing (NGS) technologies have transformed genomics by delivering fast, inexpensive and accurate genomeinformation changing the way we think about scientific approaches in basic,applied and clinical research. The inexpensive production of large volumes ofsequence data is the main advantage over the automated Sanger method,making this new technology useful for many applications. In this chapter, a brieftechnical review of NGS technologies is given, along with the keys to NGSsuccess and a broad range of applications for NGS technologies.
Resumo:
The so-called < Sandwich Generation > (SG) is characterized by concurrent and competing professional, familial, and informal caregiving workloads. These stressors pose potential health risks. However, the current knowledge about SG characteristics and perceived state of health are insufficient to allow occupational health nurses to develop evidence-based interventions designed for health promotion. We aimed to describe this population and examine the relationships between these coexisting workloads and their perceived health. This study is based on a descriptive, correlational design. Employees of a Swiss public administration completed an electronic questionnaire. Of 844 respondents, 23 % are SG members. Ages of frailed parents or parents-in-law, co-residence with the latters, children still living at home predict that employees could be members of the SG. Perceived physical health status of SG members is rated better than mental health status. The heterogeneity of SG is reflected in three clusters. Finally, physical health score is the only that differs from the other health scores adjusting for clusters and sex. This study provides a foundation for developing preventive interventions targeting the SG.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.
Resumo:
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.