968 resultados para CO2 atmosphere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kohotetun lämpötilan ja kohotetun CO2-pitoisuuden vaikutukset peltoon kylvetyn nurminadan kasvuun, satoon ja kuiva-aineen jakautumiseen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Viljelyvyöhykkeiden ja kasvumallien soveltaminen ilmastonmuutoksen tutkimisessa: Mackenzien jokialue, Kanada

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adoption of no-tillage systems (NT) and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C) in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0) of two soils (Typic Hapludox) with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a) two soil types: Typic Hapludox (Oxisol) with medium texture (LVTM) and Oxisol with clay texture (LVTA), (b) two sampling layers (0-5 and 5-20 cm), and (c) two sampling periods (P1 - October 2007; P2 - September 2008). Samples were collected from fields under a long-term (20 years) NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM) and wheat/maize/black oat + vetch/soybean (LVTA). The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0) were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Hiilihydraatti- ja proteiiniaineenvaihdunnan säätely kohonneen hiilidioksidipitoisuuden ja lämpötilan vallitessa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Koejärjestelyt kohonneen lämpötilan ja CO2-tason vaikutusten simuloimiseksi peltokasveilla Suomessa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O solo é um dos principais compartimentos de carbono no ecossistema terrestre, capaz de armazenar quantidades expressivas desse elemento e, portanto, a compreensão dos fatores que contribuem para as perdas de CO2 em solos agrícolas é fundamental para determinar estratégias de redução das emissões desse gás e ajudar a mitigar o efeito estufa. O objetivo deste estudo foi investigar o efeito do preparo do solo e da deposição de resíduos da cultura da cana-de-açúcar na emissão de CO2, temperatura e umidade do solo, durante a reforma do canavial, ao longo de um período de 15 dias. Os manejos avaliados foram: sem preparo do solo e mantendo os resíduos da colheita sobre a superfície do solo (SPCR); sem preparo do solo e sem resíduo (SPSR) e com preparo do solo e sem resíduo (CPSR). A menor média de emissão de CO2 do solo (FCO2) foi observada no manejo SPCR (2,16 µmol m-2 s-1), quando comparado aos manejos SPSR (2,90 µmol m-2 s-1) e CPSR (3,22 µmol m-2 s-1), indicando que as maiores umidades e menores variações da temperatura do solo, observadas em SPCR, foram os fatores responsáveis por tal diminuição. Durante o período de estudo, a menor média diária da FCO2 foi registrada em SPCR (1,28 µmol m-2 s-1) e a maior em CPSR (6,08 µmol m-2 s-1), após a ocorrência de chuvas. A menor perda de C-CO2 do solo foi observada no manejo SPCR (367 kg ha-1 de C-CO2), diferindo significativamente (p<0,05) dos manejos: SPSR (502 kg ha-1 de C-CO2) e CPSR (535 kg ha-1 de C-CO2). A umidade do solo foi a variável que apresentou valores mais diferenciados entre os manejos, sendo positivamente correlacionada (r = 0,55; p<0,05) com as variações temporais da emissão de CO2 nos manejos SPCR e CPSR. Em adição, a temperatura do solo diferiu (p<0,05) somente no manejo SPCR (24 ºC), quando comparada aos manejos SPSR (26 ºC) e CPSR (26,5 ºC), sugerindo que, para as condições deste estudo, o resíduo da cana-de-açúcar retido sobre a superfície propiciou uma temperatura do solo, em média, 2 ºC mais amena.