972 resultados para CITRATE PRECURSOR METHOD
Resumo:
Tin oxide is the compound more used in the gas sensor production, mainly to reduce gases like CO and H2. Their electrical properties are strongly dependent of its surface. For this is of great importance to synthesize nanoscale tin oxide particles to use they later in the films conformation. The synthesis of SnO2-TiO2 nanoparticles by polymeric precursor method is reported in this work. The particles were characterized by DTA/TG, FT-IR, XRD and SEM. Also, the electrical response of thick films measured under oxygen and carbon monoxide atmospheres is was analyzed.
Resumo:
This paper discusses the preparation and characterization of Zn 0.95Mn0.05O phase obtained by the polymeric precursor method for DMS applications. The as-obtained powders were calcined between 500 to 800°C and characterized by XRD, SEM and BET. The XRD analysis of the powder showed a crystalline material containing second phase. The crystallite sizes ranged from 20 to 51 nm. The micrographs showed that the powders consisted of soft and homogeneous agglomerations. The nitrogen adsorption/desorption curves of the Zn0.95Mn0.05O phases were type II curves, which is characteristic of mesoporous materials.
Resumo:
Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH 2, PtO 2, SnO 2 and IrO 2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded. © 2012 Sociedade Brasileira de Química.
Resumo:
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.
Resumo:
In this work La1-xCaxCoO3 (x = 0-0.4) pigments were synthesized by the polymeric precursor method with heat treatments at 700, 800 and 900 C for 4 h. The powders were characterized by colorimetry, UV-vis spectroscopy and powder X-ray diffraction (XRD). The X-ray diffraction patterns showed the presence of a single phase perovskite, changing its structure from rhombohedral to cubic, when calcium was added to the lattice. All of the pigments had a black colour with a strong absorption over the whole of the visible spectrum as a consequence of the different oxidation states of cobalt and the high short-range disorder. The substitution of Ca2+ for La3+ did not influence the pigment colour but decreased its final cost. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.
Resumo:
Lead zirconate titanate (PZT) was synthesized at the ratio of Zr/Ti=52/48 using two synthesis methods: the polymeric precursor method (PPM) and the microwave-assisted hydrothermal method (MAHM). The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution by sedimentation, hysteresis measurements and photoluminescence (PL). The results showed that PZT powders are composed of tetragonal and rhombohedral phases. Different particle sizes and morphologies were obtained depending upon the synthesis method. From the hysteresis loop verified that PZT powders synthesized by the PPM have a typical loop of ferroelectric material and are more influenced by spatial charges while particles synthesized by the MAHM have a hysteresis loop similar to paraelectric material and are less influenced by spatial charges. Both samples showed PL behavior in the green region (525 nm) whereas the sample synthesized by the PPM showed higher intensity in spectra. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
A comparative study using different mass proportions of WO3/C (1%, 5%, 10% and 15%) for H2O2 electrogeneration and subsequent phenol degradation was performed. To include the influence of the carbon substrate and the preparation methods, all synthesis parameters were evaluated. The WO3/C materials were prepared by a modified polymeric precursor method (PPM) and the sol-gel method (SGM) on Vulcan XC 72R and Printex L6 carbon supports, verifying the most efficient metal/carbon proportion. The materials were physically characterized by X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS) techniques. The XRD and the XPS techniques identified just one phase containing WO3 and elevated oxygen concentration on carbon with the presence of WO3. The oxygen reduction reaction (ORR), studied by the rotating ring-disk electrode technique, showed that WO3/C material with the lowest tungsten content (1% WO3/C), supported on Vulcan XC 72R and prepared by SGM, was the most promising electrocatalyst for H2O2 electrogeneration. This material was then analyzed using a gas diffusion electrode (GDE) and 585mgL-1 of H2O2 was produced in acid media. This GDE was employed as a working electrode in an electrochemical cell to promote phenol degradation by an advanced oxidative process. The most efficient method applied was the photo-electro-Fenton; this method allowed for 65% degradation and 11% mineralization of phenol during a 2-h period. Following 12h of exhaustive electrolysis using the photo-electro-Fenton method, the total degradation of phenol was observed after 4h and the mineralization of phenol approached 75% after 12h. © 2013 Elsevier B.V.
Resumo:
Tungsten oxide/titania (WO3/TiO2) nanopowders were synthesized by the polymeric precursor method which varied the WO3 content between 0 and 10 mol%. The powders were thermally treated in a conventional furnace and their structural, microstructural and electric properties were evaluated by X-ray diffraction (XRD), Raman spectrometry, N 2 physisorption, NH3 chemisorption, temperature-programmed reduction (TPR), X-ray absorption near-edge spectroscopy (XANES) in situ XANES and extended X-ray absorption fine structure spectroscopy (EXAFS) and transmission electron microscopy (TEM). XRD and Raman spectrometry confirmed the homogeneous distribution of an amorphous WO3 phase in the TiO 2 matrix which stabilized the anatase phase through the generation of [TiO5·V0] or [TiO5·V 0] complex sites. Conventional TPR-H2 (temperature programmed reduction) along with XANES TPR-H2 and XANES TPR-EtOH showed that WO3/TiO2 sample reduction occurs through the formation of these complex clusters. Moreover, the addition of WO3 promoted an increase in the surface acidity of doped samples as revealed by NH3 chemisorption. The WO3/TiO2 bulk-ceramic samples were further used to estimate their potential application in a humidity sensor in the range of 15-85% relative humidity. Probable reasons that lead to the different humidity sensor responses of samples were given based on the structural and surface characterizations. Correlation between the sensing performance of the sensor and its structural features are also discussed. Although all samples responded as a humidity sensor, the W2T sample (2 mol% added WO3) excelled for sensitivity due to the increase in acid sites, optimum mean pore size and pore size distribution. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)