949 resultados para CETP transgenic mice
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
Mice transgenic for the E7 tumor Ag of human papillomavirus type 16, driven from a keratin 14 promoter, express E7 in keratinocytes but not dendritic cells. Grafted E7-transgenic skin is not rejected by E7-immunized mice that reject E7-transduced transplantable tumors. Rejection of recently transplanted E7-transgenic skin grafts, but not of control nontransgenic grafts or of established E7-transgenic grafts, is induced by systemic administration of live or killed Listeria monocytogenes or of endotoxin. Graft recipients that reject an E7 graft reject a subsequent E7 graft more rapidly and without further L. monocytogenes exposure, whereas recipients of an E7 graft given without L. monocytogenes do not reject a second graft, even if given with L. monocytogenes. Thus, cross-presentation of E7 from keratinocytes to the adaptive immune system occurs with or without a proinflammatory stimulus, but proinflammatory stimuli at the time of first cross-presentation of Ag can determine the nature of the immune response to the Ag. Furthermore, immune effector mechanisms responsible for rejection of epithelium expressing a tumor Ag in keratinocytes are different from those that reject an E7-expressing transplantable tumor. These observations have implications for immunotherapy for epithelial cancers.
Resumo:
Individuals with acute hepatitis B virus (HBV) infection characteristically mount a strong, multispecific cytotoxic T lymphocyte (CTL) response that is effective in eradicating virus. In contrast, this response in chronic carriers is usually weak or undetectable. Since it is generally acknowledged that HBV pathogenesis is immune-mediated, the occurrence of episodes of active liver disease in many carriers suggests that these individuals can mount active CTL responses to HBV. To see whether the detection of circulating CTLs is related to these flare episodes, we have determined the CTL precursor (CTLp) frequencies to HLA-A2-restricted viral peptides in seven patients over a 12-24-month period of their disease. Limiting dilution analyses (LDA) were performed longitudinally to five epitopes comprising the viral capsid (HBc), envelope (HBs) and polymerase (pol) proteins. Assays were performed against a mixture of peptides, or against each individual peptide, to measure overall CTL activity and the multispecificity of the responses, respectively. Since two of the patients were treated with recombinant human interleukin-12 (rHuIL-12) at the time, with one individual achieving complete disease remission a year later after being treated with interferon-alpha, we were also able to examine the effects of these cytokines on HBV cytotoxicity. Our results indicate that weak but detectable CTL responses do occur in chronic carriers which are generally associated with disease flares, although CTLps were also seen occasionally during minimal disease activity. The range of specificities varied between individuals and within each individual during the course of the disease. Finally, we also provide evidence that CTL reactivity is stimulated following treatment with certain cytokines, but is dependent on the time of administration.
Resumo:
SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.
Resumo:
Mice transgenic for E6/E7 oncogenes of Human Papillomavirus type 16 display life-long expression of E6 in lens and skin epithelium, and develop inflammatory skin disease late in life, which progresses to papillomata and squamous carcinoma in some mice. We asked whether endogenous expression of E6 induced a specific immunological outcome, i.e. immunity or tolerance, or whether the mice remained immunologically naive to E6. We show that prior to the onset of skin disease, E6 transgenic mice did not develop a spontaneous E6-directed antibody response, nor did they display T-cell proliferative responses to dominant T-helper epitope peptides within E6. In contrast, old mice in which skin disease had arisen, developed antibodies to E6. We also show that following immunisation with E6, specific antibody responses did not differ significantly among groups of EB-transgenic mice of different ages (and therefore of different durations and amounts of exposure to endogenous E6), and non-transgenic controls. Additionally, E6 immunisation-induced T-cell proliferative responses were similar in E6-transgenic and non-transgenic mice. These data are consistent with the interpretation that unimmunised Eb-transgenic mice that have not developed inflammatory skin disease remain immunologically naive to E6 at the B- and Th levels. There are implications for E6-mediated tumorigenesis in humans, and for the development of putative E6 therapeutic vaccines. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Duck hepatitis B viruses (DHBV), unlike mammalian hepadnaviruses, are thought to lack X genes, which encode transcription-regulatory proteins believed to contribute to the development of hepatocellular carcinoma. A lack of association of chronic DHBV infection with hepatocellular carcinoma development supports this belief. Here, we demonstrate that DHBV genomes have a hidden open reading frame from which a transcription-regulatory protein, designated DHBx, is expressed both in vitro and in vivo. We show that DHBx enhances neither viral protein expression, intracellular DNA synthesis, nor virion production when assayed in the full-length genome context in LMH cells. However, similar to mammalian hepadnavirus X proteins, DHBx activates cellular and viral promoters via the Raf-mitogen-activated protein kinase signaling pathway and localizes primarily in the cytoplasm. The functional similarities as,well as the weak sequence homologies of DHBx and the X proteins of mammalian hepadnaviruses strongly suggest a common ancestry of ortho- and avihepadnavirus X genes. In addition, our data disclose similar intracellular localization and transcription regulatory functions of the corresponding proteins, raise new questions as to their presumed role in hepatocarcinogenesis, and imply unique opportunities for deciphering of their still-enigmatic in vivo functions.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
SOX9 is a transcription factor that is expressed in chondrocytes and regulates expression of chondrocyte phenotype related genes. Expression of these genes is known to be suppressed by retinoic acid (RA). We, therefore, examined whether the Sox9 gene expression is regulated by RA in chondrocytes. RA treatment suppressed Sox9 mRNA expression in primary chondrocytes prepared from newborn mouse rib cartilage within 12 h and this suppression lasted at least up to 24 h. The RA suppression of Sox9 mRNA levels was dose-dependent starting at 0.5 muM with a maximum at 1 muM. Nuclear run-on assays revealed that RA reduced the rate of transcription of Sox9 gene. Finally, Western blot analysis indicated that RA suppressed SOX9 protein revels in these chondrocytes. Furthermore, overexpression of SOX9 reversed RA suppression of Col/2a1 enhancer activity. These observations indicate that RA suppresses Sox9 gene expression in chondrocytes at least in part through transcriptional events. (C) 2001 Wiley-Liss, Inc.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major axes of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.
Resumo:
Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons. the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice. primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from other studies indicating that mitral cells do not play a major role in the convergence and targeting of primary olfactory axons in the olfactory bulb. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Keratinocyte Growth factor (KGF) is an epithelial cell growth factor of the fibroblast growth factor family and is produced by fibroblasts and microvascular endothelium in response to proinflammatory cytokines and steroid hormones. KGF is a heparin binding growth factor that exerts effects on epithelial cells in a paracrine fashion through interaction with KGF receptors. Preclinical data has demonstrated that KGF can prevent lung and gastrointestinal toxicity following chemotherapy and radiation and preliminary clinical data in the later setting supports these findings. In the experimental allogeneic bone marrow transplant scenario KGF has shown significant ability to prevent graft-versus-host disease by maintaining gastrointestinal tract integrity and acting as a cytokine shield to prevent subsequent proinflammatory cytokine generation. Within this setting KGF has also shown an ability to prevent experimental idiopathic pneumonia syndrome by stimulating production of surfactant protein A, promoting alveolar epithelialization and attenuating immune-mediated injury. Perhaps most unexpectantly, KGF appears able to maintain thymic function during allogeneic stern cell transplantation and so promote T cell engraftment and reconstitution. These data suggest that KGF will find a therapeutic role in the prevention of epithelial toxicity following intensive chemotherapy and radiotherapy protocols and in allogeneic stem cell transplantation.
Resumo:
Cell surface glycoconjugates have been implicated in the growth and guidance of subpopulations of primary olfactory axons. While subpopulations of primary olfactory neurons have been identified by differential expression of carbohydrates in the rat there are few reports of similar subpopulations in the mouse. We have examined the spatiotemporal expression pattern of glycoconjugates recognized by the lectin from Wisteria floribunda (WFA) in the mouse olfactory system. In the developing olfactory neuroepithelium lining the nasal cavity, WFA stained a subpopulation of primary olfactory neurons and the fascicles of axons projecting to the target tissue, the olfactory bulb. Within the developing olfactory bulb, WFA stained the synaptic neuropil of the glomerular and external plexiform layers. In adults, strong expression of WFA ligands was observed in second-order olfactory neurons as well as in neurons in several higher order olfactory processing centres in the brain. Similar, although distinct, staining of neurons in the olfactory pathway was detected with Dolichos biflorus agglutinin. These results demonstrate that unique subpopulations of olfactory neurons are chemically coded by the expression of glycoconjugates. The conserved expression of these carbohydrates across species suggests they play an important role in the functional organization of this region of the nervous system.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.