982 resultados para CARRIERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airport efficiency is important because it has a direct impact on customer safety and satisfaction and therefore the financial performance and sustainability of airports, airlines, and affiliated service providers. This is especially so in a world characterized by an increasing volume of both domestic and international air travel, price and other forms of competition between rival airports, airport hubs and airlines, and rapid and sometimes unexpected changes in airline routes and carriers. It also reflects expansion in the number of airports handling regional, national, and international traffic and the growth of complementary airport facilities including industrial, commercial, and retail premises. This has fostered a steadily increasing volume of research aimed at modeling and providing best-practice measures and estimates of airport efficiency using mathematical and econometric frontiers. The purpose of this chapter is to review these various methods as they apply to airports throughout the world. Apart from discussing the strengths and weaknesses of the different approaches and their key findings, the paper also examines the steps faced by researchers as they move through the modeling process in defining airport inputs and outputs and the purported efficiency drivers. Accordingly, the chapter provides guidance to those conducting empirical research on airport efficiency and serves as an aid for aviation regulators and airport operators among others interpreting airport efficiency research outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The size of the carrier influences the aerosolization of drug from a dry powder inhaler (DPI) formulation. Currently, lactose monohydrate particles in a variety of sizes are preferably used in carrier based DPI formulations of various drugs; however, contradictory reports exist regarding the effect of the size of the carrier on the dispersion of drug. In this study we examined the influence of the intrinsic particle size of the polymeric carrier on the aerosolization of a model drug salbutamol sulphate (SS). Methods Four different sizes (20–150 lm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS particles from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were by laser diffraction and SEM, respectively. Results The FPF from these carriers was found to be increasing from 5.6% to 21.3% with increasing the carrier size. The FPF was found to be greater (21%) with the highest particle size of the carrier (150 lm). Conclusions The aerosolization of drug was dependent on the size of polymer carriers. The smaller size of the carrier resulted in lower FPF which was increased with increasing the carrier size. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Publishing is no doubt one of the oldest and most diverse sectors in the creative economy. While publishing originally was associated with print and paper, the term is nowadays also commonly used to represent organizations that control, administer and license intellectual properties in other sectors of the creative economy such as videogames and music. While the title of this chapter is ‘Publishing’, we have no intention of covering all publishing related activities, but will focus on the economic consequences of digitization on two traditional and important print media sectors, namely books and magazines. Within these sectors we will specifically focus on consumer magazines and trade books, in other words books and magazines that are sold via commercial retailers to consumers. It is relevant to study these two publishing industries, since they share a number of very fundamental characteristics and have experienced similar economic consequences caused by the digitization of the creative economy. Both industries have undergone a gradual shift from print to digital and increasingly rely on revenues based on digital content carriers such as e- books, tablet magazine applications, special interest websites, blogs and so on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A largely overlooked aspect of creative design practices is how physical space in design studios plays a role in supporting designers' everyday work. In particular, studio surfaces such as designers' desks, office walls, notice boards, clipboards and drawing boards are full of informative, inspirational and creative artefacts such as, sketches, drawings, posters, story-boards and Post-it notes. Studio surfaces are not just the carriers of information but importantly they are sites of methodic design practices, i.e. they indicate, to an extent, how design is being carried out. This article describes the results of an ethnographic study on the use of workplace surfaces in design studios, from two academic design departments. Using the field study results, the article introduces an idea of ‘artful surfaces’. Artful surfaces emphasise how artfully designers integrate these surfaces into their everyday work and how the organisation of these surfaces comes about helping designers in accomplishing their creative and innovative design practices. Using examples from the field study, the article shows that artful surfaces have both functional and inspirational characteristics. From the field study, three types of artful surfaces are identified: personal; shared; and project-specific. The article suggests that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers' everyday work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limbal stem cell deficiency leads to conjunctivalisation of the cornea and subsequent loss of vision. The recent development of transplantation of ex-vivo amplified corneal epithelium, derived from limbal stem cells, has shown promise in treating this challenging condition. The purpose of this research was to compare a variety of cell sheet carriers for their suitability in creating a confluent corneal epithelium from amplified limbal stem cells. Cadaveric donor limbal cells were cultured using an explant technique, free of 3T3 feeder cells, on a variety of cell sheet carriers, including denuded amniotic membrane, Matrigel, Myogel and stromal extract. Comparisons in rate of growth and degree of differentiation were made, using immunocytochemistry (CK3, CK19 and ABCG2). The most rapid growth was observed on Myogel and denuded amniotic membrane, these two cell carriers also provided the most reliable substrata for achieving confluence. The putative limbal stem cell marker, ABCG2, stained positively on cells grown over Myogel and Matrigel but not for those propagated on denuded amniotic membrane. In the clinical setting amniotic membrane has been demonstrated to provide a suitable carrier for limbal stem cells and the resultant epithelium has been shown to be successful in treating limbal stem cell deficiency. Myogel may provide an alternative cell carrier with a further reduction in risk as it is has the potential to be derived from an autologous muscle biopsy in the clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main issues related to control of energy and matter in hierarchical low-temperature plasma-solid systems used in nanoscale synthesis and processing are critically examined. A conceptual approach to identify the most effective carriers and transport mechanisms of energy and matter at the nano- and subnanometer scales in plasma-aided nanofabrication is proposed. This approach is highly relevant to the envisaged energy- and matter-efficient plasma-based production of the next-generation advanced nanomaterials for applications in the energy, environment, food, water, health, and security technologies critically needed for a sustainable future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44+ progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44+p27+ cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27+ cells and their proliferation. Our results suggest that pathways controlling p27+ mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-linear self-interaction of the potential surface polaritons (SP) which is due to the free carriers dispersion law where nonparabolicity is studied. The SP propagate at the interface between n-type semiconductor and a metal. The self interaction of the SP is shown to be different in semiconductors with normal and inverse zone structures. The results of the SP field envelope evolution are given. The obtained nonlinear frequency shift has been compared with shifts which are due to another self-interaction mechanisms. This comparison shows that the nonlinear self-interaction mechanism, which is due to free carriers spectrum nonparabolicity, is especially significant in narrow-gap semiconductor materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear self-interaction of the potential surface magnetoplasmons, propagating across the external magnetic field at the n-type semiconductor-metal interface is described in this manuscript. The studied nonlinearity is due to the free carriers dispersion law nonparabolicity and we show that it acts differently in semiconductor materials with normal and inverse band structures. The results of the nonlinear evolution of the surface magnetoplasmons are presented as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a modulation and controller design method for paralleled Z-source inverter systems applicable for alternative energy sources like solar cells, fuel cells, or variablespeed wind turbines with front-end diode rectifiers. A modulation scheme is designed based on simple shoot-through principle with interleaved carriers to give enhanced ripple reduction in the system. Subsequently, a control method is proposed to equalize the amount of power injected by the inverters in the grid-connected mode and also to provide reliable supply to sensitive loads onsite in the islanding mode. The modulation and controlling methods are proposed to have modular independence so that redundancy, maintainability, and improved reliability of supply can be achieved. The performance of the proposed paralleled Z-source inverter configuration is validated with simulations carried out using Matlab/Simulink/Powersim. Moreover, a prototype is built in the laboratory to obtain the experimental verifications.