931 resultados para CARBENE ANALOGS
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
We are currently experiencing a key period in the management of patients with relapsing remitting multiple sclerosis. The application of new criteria allows early diagnosis, thus at a stage when the available immune treatments are the most likely to show a good efficacy. The therapeutic offer is expanding but its complexity too. It is thus important, for a given patient, to assess as precisely as possible the degree of severity of his/her disease, in order to give the drug with the optimal risk/benefit ratio.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms.
Resumo:
In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without.
Resumo:
PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.
Resumo:
Liposomal pegylated doxorubicin is an encapsulation form of doxorubicin, with an improved pharmacokinetic profile and the ability to selectively accumulate into tumor tissue. As a result, the tolerated dose of the drug can be increased, followed by a reduced incidence of neutropenia and cardiotoxicity in comparison to doxorubucin treatment. However, a common adverse dose-schedule limiting effect of the treatment is palmoplantar erythrodysesthesia syndrome. In this retrospective study we included six patients hospitalised in the University Hospital of Zurich during the last 2 years, in connection with side effects caused by pegylated liposomal doxorubicin. These patients received this chemotherapeutic agent for treatment of various malignancies such as breast cancer, ovarian cancer, mycosis fungoides and cutaneous B-cell lymphoma. Three of six patients in this study developed classical palmoplantar erythrodysesthesia, one developed palmoplantar erythrodysesthesia associated with extensive bullous disease, one developed eruption of lymphocyte recovery syndrome and one developed intertrigo like dermatitis with stomatitis. Pegylated liposomal doxorubicin induces various skin reactions including palmoplantar erythrodysesthesia syndrome. However, the exact clinical presentation might depend on pre-existing skin diseases.
Resumo:
There are various methods of providing pain relief for painful blind eyes. We wish to recommend this effective method of providing temporary analgesia in patients suffering from a severe painful blind eye before undergoing enucleation.
Resumo:
Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.
Resumo:
Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.
Resumo:
Hereditary angioedema is a disease which develops as a result of a deficiency or dysfonction of C1-inhibitor, a key regulator of the complement, coagulation and contact cascades, resulting among others in excessive release of bradykinin. This disease mortality rate is high in absence of immediate and effective treatment, in particular in presence of acute attacks of the upper respiratory tract (laryngeal edema). Until now only administration of a purified C1-inhibitor extract was effective against these symptoms. This paper aims to synthesise essentials knowledge concerning news drugs, in particular icatibant, a selective bradykinin B2- receptor antagonist whose use should be widened to the treatment of angioedema with ACE-inhibitors intolerance.
Resumo:
OBJECTIVE: Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS: Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION: The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.
Resumo:
We assessed the safety, tolerability, and immunogenicity of a mixture of three synthetic peptides derived from the Plasmodium vivax circumsporozoite protein formulated in Montanide ISA 720 or Montanide ISA 51. Forty healthy malaria-naive volunteers were allocated to five experimental groups (A-E): four groups (A-D) were immunized intramuscularly with 50 and 100 μg/dose injections of a mixture of N, R, and C peptides formulated in the two different adjuvants at 0, 2, and 4 months and one group was administered placebo. Vaccines were immunogenic, safe, well tolerated, and no serious adverse events related to the vaccine occurred. Seroconversion occurred in > 90% of the vaccines and antibodies recognized the sporozoite protein on immunofluorescent antibody test. Vaccines in Montanide ISA 51 showed a higher sporozoite protein recognition and interferon production. Results encourage further testing of the vaccine protective efficacy.