853 resultados para Business process modelling
Resumo:
Process models provide visual support for analyzing and improving complex organizational processes. In this paper, we discuss differences of process modeling languages using cognitive effectiveness considerations, to make statements about the ease of use and quality of user experience. Aspects of cognitive effectiveness are of importance for learning a modeling language, creating models, and understanding models. We identify the criteria representational clarity, perceptual discriminability, perceptual immediacy, visual expressiveness, and graphic parsimony to compare and assess the cognitive effectiveness of different modeling languages. We apply these criteria in an analysis of the routing elements of UML Activity Diagrams, YAWL, BPMN, and EPCs, to uncover their relative strengths and weaknesses from a quality of user experience perspective. We draw conclusions that are relevant to the usability of these languages in business process modeling projects.
Resumo:
In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid, and graphical representation forms. We also examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms are well-suited to describe business processes. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
Business process modeling is widely regarded as one of the most popular forms of conceptual modeling. However, little is known about the capabilities and deficiencies of process modeling grammars and how existing deficiencies impact actual process modeling practice. This paper is a first contribution towards a theory-driven, exploratory empirical investigation of the ontological deficiencies of process modeling with the industry standard Business Process Modeling Notation (BPMN). We perform an analysis of BPMN using a theory of ontological expressiveness. Through a series of semi-structured interviews with BPMN adopters we explore empirically the actual use of this grammar. Nine ontological deficiencies related to the practice of modeling with BPMN are identified, for example, the capture of business rules and the specification of process decompositions. We also uncover five contextual factors that impact on the use of process modeling grammars, such as tool support and modeling conventions. We discuss implications for research and practice, highlighting the need for consideration of representational issues and contextual factors in decisions relating to BPMN adoption in organizations.
Building a methodology for context-aware business processes: insights from an exploratory case study
Resumo:
This paper describes the findings derived from an exploratory case study into the business processes at a leading Australian insurance provider. The business processes are frequently subjected to changes and deviations due to contextual events such as weather, financial conditions and others. In this study, we examine how context impacts business processes and how resulting business process changes are enacted. From our analysis, we suggest a methodological framework to guide organisations in the complex challenge of linking changing contextual factors with internal process design.
Resumo:
Business processes have emerged as a well-respected variable in the design of successful corporations. However, unlike other key managerial variables, such as products and services, customers and employees, physical or digital assets, the conceptualization and management of business processes are in many respects in their infancy. In this book, Jan Recker investigates the notion of quality of business process modeling grammars. His evaluation is based on an ontological-, qualitative-, and quantitative analysis, applied to BPMN, a widely-used business process modeling grammar. His results reveal the ontological shortcomings of BPMN and how these manifest themselves in actual process modeling practice, as well as how they influence the usage behavior of modeling practitioners. More generally, his book constitutes a landmark for empirical technology assessment, analyzing the way in which design flaws in technology influence usage behavior.
Resumo:
Process modeling is an emergent area of Information Systems research that is characterized through an abundance of conceptual work with little empirical research. To fill this gap, this paper reports on the development and validation of an instrument to measure user acceptance of process modeling grammars. We advance an extended model for a multi-stage measurement instrument development procedure, which incorporates feedback from both expert and user panels. We identify two main contributions: First, we provide a validated measurement instrument for the study of user acceptance of process modeling grammars, which can be used to assist in further empirical studies that investigate phenomena associated with the business process modeling domain. Second, in doing so, we describe in detail a procedural model for developing measurement instruments that ensures high levels of reliability and validity, which may assist fellow scholars in executing their empirical research.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them being used for information systems development. In this paper, we examine two factors that we predict will influence the understanding of a business process that novice developers obtain from a corresponding process model: the content presentation form chosen to articulate the business domain, and the user characteristics of the novice developers working with the model. Our experimental study provides evidence that novice developers obtain similar levels of understanding when confronted with an unfamiliar or a familiar process model. However, previous modeling experience, the use of English as a second language, and previous work experience in BPM are important influencing factors of model understanding. Our findings suggest that education and research in process modeling should increase the focus on human factors and how they relate to content and content presentation formats for different modeling tasks. We discuss implications for practice and research.
Resumo:
Reliable infrastructure assets impact significantly on quality of life and provide a stable foundation for economic growth and competitiveness. Decisions about the way assets are managed are of utmost importance in achieving this. Timely renewal of infrastructure assets supports reliability and maximum utilisation of infrastructure and enables business and community to grow and prosper. This research initially examined a framework for asset management decisions and then focused on asset renewal optimisation and renewal engineering optimisation in depth. This study had four primary objectives. The first was to develop a new Asset Management Decision Framework (AMDF) for identifying and classifying asset management decisions. The AMDF was developed by applying multi-criteria decision theory, classical management theory and life cycle management. The AMDF is an original and innovative contribution to asset management in that: · it is the first framework to provide guidance for developing asset management decision criteria based on fundamental business objectives; · it is the first framework to provide a decision context identification and analysis process for asset management decisions; and · it is the only comprehensive listing of asset management decision types developed from first principles. The second objective of this research was to develop a novel multi-attribute Asset Renewal Decision Model (ARDM) that takes account of financial, customer service, health and safety, environmental and socio-economic objectives. The unique feature of this ARDM is that it is the only model to optimise timing of asset renewal with respect to fundamental business objectives. The third objective of this research was to develop a novel Renewal Engineering Decision Model (REDM) that uses multiple criteria to determine the optimal timing for renewal engineering. The unique features of this model are that: · it is a novel extension to existing real options valuation models in that it uses overall utility rather than present value of cash flows to model engineering value; and · it is the only REDM that optimises timing of renewal engineering with respect to fundamental business objectives; The final objective was to develop and validate an Asset Renewal Engineering Philosophy (AREP) consisting of three principles of asset renewal engineering. The principles were validated using a novel application of real options theory. The AREP is the only renewal engineering philosophy in existence. The original contributions of this research are expected to enrich the body of knowledge in asset management through effectively addressing the need for an asset management decision framework, asset renewal and renewal engineering optimisation based on fundamental business objectives and a novel renewal engineering philosophy.
Resumo:
Business process modeling as a practice and research field has received great attention in recent years. However, while related artifacts such as models, tools or grammars have substantially matured, comparatively little is known about the activities that are conducted as part of the actual act of process modeling. Especially the key role of the modeling facilitator has not been researched to date. In this paper, we propose a new theory-grounded, conceptual framework describing four facets (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that can be used by a facilitator. These facets with behavioral styles have been empirically explored via in-depth interviews and additional questionnaires with experienced process analysts. We develop a proposal for an emerging theory for describing, investigating, and explaining different behaviors associated with Business Process Modeling Facilitation. This theory is an important sensitizing vehicle for examining processes and outcomes from process modeling endeavors.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The resulting collections can consist of hundreds, even thousands of models and their management poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks. This query language is independent of the particular process modelling notation used, but we will demonstrate how it can be used in the context of Petri nets by showing how the semantic relationships can be determined for these nets in such a way that state space explosion is avoided as much as possible. An experiment with three large process model repositories shows that queries expressed in our language can be evaluated efficiently.
Resumo:
Technologies and languages for integrated processes are a relatively recent innovation. Over that period many divergent waves of innovation have transformed process integration. Like sockets and distributed objects, early workflow systems ordered programming interfaces that connected the process modelling layer to any middleware. BPM systems emerged later, connecting the modelling world to middleware through components. While BPM systems increased ease of use (modelling convenience), long-standing and complex interactions involving many process instances remained di±cult to model. Enterprise Service Buses (ESBs), followed, connecting process models to heterogeneous forms of middleware. ESBs, however, generally forced modellers to choose a particular underlying middleware and to stick to it, despite their ability to connect with many forms of middleware. Furthermore ESBs encourage process integrations to be modelled on their own, logically separate from the process model. This can lead to the inability to reason about long standing conversations at the process layer. Technologies and languages for process integration generally lack formality. This has led to arbitrariness in the underlying language building blocks. Conceptual holes exist in a range of technologies and languages for process integration and this can lead to customer dissatisfaction and failure to bring integration projects to reach their potential. Standards for process integration share similar fundamental flaws to languages and technologies. Standards are also in direct competition with other standards causing a lack of clarity. Thus the area of greatest risk in a BPM project remains process integration, despite major advancements in the technology base. This research examines some fundamental aspects of communication middleware and how these fundamental building blocks of integration can be brought to the process modelling layer in a technology agnostic manner. This way process modelling can be conceptually complete without becoming stuck in a particular middleware technology. Coloured Petri nets are used to define a formal semantics for the fundamental aspects of communication middleware. They provide the means to define and model the dynamic aspects of various integration middleware. Process integration patterns are used as a tool to codify common problems to be solved. Object Role Modelling is a formal modelling technique that was used to define the syntax of a proposed process integration language. This thesis provides several contributions to the field of process integration. It proposes a framework defining the key notions of integration middleware. This framework provides a conceptual foundation upon which a process integration language could be built. The thesis defines an architecture that allows various forms of middleware to be aggregated and reasoned about at the process layer. This thesis provides a comprehensive set of process integration patterns. These constitute a benchmark for the kinds of problems a process integration language must support. The thesis proposes a process integration modelling language and a partial implementation that is able to enact the language. A process integration pilot project in a German hospital is brie°y described at the end of the thesis. The pilot is based on ideas in this thesis.
Resumo:
Humans have altered environments and enhanced their well being unlike any other creature on the planet (Heilman & Donna, 2007); this is no different whether the environment is ecological, social or organisational. In recent times business modelling techniques have become intricately detailed in the pre-designing and evaluating of business flow before the final implementation (Ou-Yang & Lin, 2008). The importance of the organisation change and business process model is undeniable. The feedback received from real business process users is that the notation is easy to learn; the models do help people to understand the process better; the models can be used to improve the (business) process; and the notation is expressive enough to capture the essential information (Bennett, Doshi, Do Vale Junior, Kumar, Manikam, & Madavan, 2009).
Resumo:
Recent studies have started to explore context-awareness as a driver in the design of adaptable business processes. The emerging challenge of identifying and considering contextual drivers in the environment of a business process are well understood, however, typical methods used in business process modeling do not yet consider this additional contextual information in their process designs. In this chapter, we describe our research towards innovative and advanced process modeling methods that include mechanisms to incorporate relevant contextual drivers and their impacts on business processes in process design models. We report on our ongoing work with an Australian insurance provider and describe the design science we employed to develop these innovative and useful artifacts as part of a context-aware method framework. We discuss the utility of these artifacts in an application in the claims handling process at the case organization.
Resumo:
Process modeling is an important design practice in organizational improvement projects. In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid and graphical representation forms. We examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms appear well-suited to describe business processes. We further examine how process design preferences predict formalized process modeling ability. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
Though the value of a process-centred view for the understanding and (re-)design of corporations has been widely accepted, our understanding of the research process in Information Systems (IS) remains superficial. A process-centred view on IS research considers the conduct of a research project as a sequence of activities involving resources, data and research artifacts. As such, it helps to reflect on more effective ways to conduct IS research, to consolidate and compare diverse practices and to complement the focus on research methodologies with research project practices. This paper takes a first step towards the discipline of ‘Research Process Management’ by exploring the features of research processes and by presenting a preliminary approach for research process design that can facilitate modelling IS research. The case study method and the design science research method are used as examples to demonstrate the potential of such reference research process models.